Pregled bibliografske jedinice broj: 483762
Polyhedral reduction domains from perfect forms
Polyhedral reduction domains from perfect forms // AMS Special Session on Diophantine Problems and Discrete Geometry
Claremont (CA), Sjedinjene Američke Države, 2008. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483762 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Polyhedral reduction domains from perfect forms
Autori
Schurmann, Achill ; Dutour Sikirić, Mathieu ; Vallentin, Frank
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
AMS Special Session on Diophantine Problems and Discrete Geometry
/ - , 2008
Skup
AMS Special Session on Diophantine Problems and Discrete Geometry
Mjesto i datum
Claremont (CA), Sjedinjene Američke Države, 03.05.2008. - 04.05.2008
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
polyhedral cone; perfect form; enumeration
Sažetak
A real, positive definite quadratic form in n variables is called perfect, if it is uniquely determined by its arithmetical minimum and the integral vectors representing it. Due to a classical theorem of Voronoi, for every n, there exist only finitely many perfect forms up to arithmetical equivalence. In this talk we explain how to classify perfect forms using polyhedral computations and how to obtain a reduction domain from such a classification. We discuss some applications and generalization.
Izvorni jezik
Engleski
Znanstvena područja
Matematika