Pregled bibliografske jedinice broj: 483653
Cube packing, second moment and holes
Cube packing, second moment and holes // 6th symposium on algebra and computation 2005, Tokyo Metropolitan University
Tokyo, Japan, 2005. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483653 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Cube packing, second moment and holes
Autori
Itoh, Yoshiaki ; Dutour Sikirić, Mathieu ; Poyarkov, Alexei
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
6th symposium on algebra and computation 2005, Tokyo Metropolitan University
/ - , 2005
Skup
6th symposium on algebra and computation 2005, Tokyo Metropolitan University
Mjesto i datum
Tokyo, Japan, 15.11.2005. - 18.11.2005
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
cube packing; second moment; holes; enumeration
(Cube packing; second moment; holes; enumeration)
Sažetak
We consider tilings and packings of R^d by integral translates of cubes [0, 2[^d, which are 4Z^d-periodic. Such cube packings can be described by cliques of an associated graph, which allow us to classify them in dimensions d<=4. For higher dimensions, we use random methods for generating some examples. Such a cube packing is called non- extendible if we cannot insert a cube in the complement of the packing. In dimension 3, there is a unique non-extendible cube packing with 4 cubes. We prove that d-dimensional cube packings with more than 2^d-3 cubes can be extended to cube tilings. We also give a lower bound on the number N of cubes of non-extendible cube packings. Given such a cube packing and z in Z^d, we denote by Nz the number of cubes inside the cube z+[0, 4[^d and call second moment the average of N_z^2. We prove that the regular tiling by cubes has maximal second moment and give a lower bound on the second moment of a cube packing in terms of its density and dimension.
Izvorni jezik
Engleski
Znanstvena područja
Matematika