Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 483630

Goldberg Coxeter construction for 3- or 4-valent plane maps


Dutour, Mathieu; Deza, Michel
Goldberg Coxeter construction for 3- or 4-valent plane maps // Final conference of research group «General theory of information transfer and combinatorics» of Center for interdisciplinary research (ZiF) University of Bielefeld
Bielefeld, Njemačka, 2004. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)


CROSBI ID: 483630 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Goldberg Coxeter construction for 3- or 4-valent plane maps

Autori
Dutour, Mathieu ; Deza, Michel

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni

Izvornik
Final conference of research group «General theory of information transfer and combinatorics» of Center for interdisciplinary research (ZiF) University of Bielefeld / - , 2004

Skup
Final conference of research group «General theory of information transfer and combinatorics» of Center for interdisciplinary research (ZiF) University of Bielefeld

Mjesto i datum
Bielefeld, Njemačka, 26.04.2004. - 29.04.2004

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Goldberg Coxeter construction; modular group

Sažetak
We consider the Goldberg-Coxeter construction GC(k, l, G0) (a generalization of a simplicial subdivision of Dodecahedron considered), which produces a plane graph from any 3- or 4-valent plane graph for integer parameters k, l. A zigzag in a plane graph is a circuit of edges, such that any two, but no three, consecutive edges belong to the same face ; a central circuit in a 4-valent plane graph G is a circuit of edges, such that no two consecutive edges belong to the same face. We study the zigzag (or central circuit) structure of the resulting graph using the algebraic formalism of the moving group, the (k, l)-product and a finite index subgroup of SL2(Z), whose elements preserve the above structure. We also study the intersection pattern of zigzags (or central circuits) of GC(k, l, G0) and consider its projections, obtained by removing all but one zigzags (or central circuits).

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Mathieu Dutour Sikirić (autor)


Citiraj ovu publikaciju:

Dutour, Mathieu; Deza, Michel
Goldberg Coxeter construction for 3- or 4-valent plane maps // Final conference of research group «General theory of information transfer and combinatorics» of Center for interdisciplinary research (ZiF) University of Bielefeld
Bielefeld, Njemačka, 2004. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
Dutour, M. & Deza, M. (2004) Goldberg Coxeter construction for 3- or 4-valent plane maps. U: Final conference of research group «General theory of information transfer and combinatorics» of Center for interdisciplinary research (ZiF) University of Bielefeld.
@article{article, author = {Dutour, Mathieu and Deza, Michel}, year = {2004}, keywords = {Goldberg Coxeter construction, modular group}, title = {Goldberg Coxeter construction for 3- or 4-valent plane maps}, keyword = {Goldberg Coxeter construction, modular group}, publisherplace = {Bielefeld, Njema\v{c}ka} }
@article{article, author = {Dutour, Mathieu and Deza, Michel}, year = {2004}, keywords = {Goldberg Coxeter construction, modular group}, title = {Goldberg Coxeter construction for 3- or 4-valent plane maps}, keyword = {Goldberg Coxeter construction, modular group}, publisherplace = {Bielefeld, Njema\v{c}ka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font