Pregled bibliografske jedinice broj: 483623
Goldberg Coxeter construction for 3- or 4-valent plane maps
Goldberg Coxeter construction for 3- or 4-valent plane maps // Com2mac Mini-workshop on two-face embeddings of graphs and applications
Pohang, Republika Koreja, 2004. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483623 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Goldberg Coxeter construction for 3- or 4-valent plane maps
Autori
Dutour, Mathieu ; Deza, Michel
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
Com2mac Mini-workshop on two-face embeddings of graphs and applications
/ - , 2004
Skup
Com2mac Mini-workshop on two-face embeddings of graphs and applications
Mjesto i datum
Pohang, Republika Koreja, 05.01.2004. - 14.01.2004
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Goldberg Coxeter construction; modular group
Sažetak
We consider the Goldberg-Coxeter construction GC(k, l, G0) (a generalization of a simplicial subdivision of Dodecahedron), which produces a plane graph from any 3- or 4-valent plane graph for integer parameters k, l. A zigzag in a plane graph is a circuit of edges, such that any two, but no three, consecutive edges belong to the same face ; a central circuit in a 4-valent plane graph G is a circuit of edges, such that no two consecutive edges belong to the same face. We study the zigzag (or central circuit) structure of the resulting graph using the algebraic formalism of the moving group, the (k, l)-product and a finite index subgroup of SL2(Z), whose elements preserve the above structure. We also study the intersection pattern of zigzags (or central circuits) of GC(k, l, G0) and consider its projections, obtained by removing all but one zigzags (or central circuits).
Izvorni jezik
Engleski
Znanstvena područja
Matematika