Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 483565

Torus Cube tiling


Dutour Sikirić, Mathieu; Itoh, Yoshiaki; Poyarkov, Alexei
Torus Cube tiling // ISM Symposium, Stochastic models and discrete geometry, The Institute of Statistical mathematics
Tokyo, Japan, 2005. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)


CROSBI ID: 483565 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Torus Cube tiling

Autori
Dutour Sikirić, Mathieu ; Itoh, Yoshiaki ; Poyarkov, Alexei

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni

Izvornik
ISM Symposium, Stochastic models and discrete geometry, The Institute of Statistical mathematics / - , 2005

Skup
ISM Symposium, Stochastic models and discrete geometry, The Institute of Statistical mathematics

Mjesto i datum
Tokyo, Japan, 24.03.2005. - 25.03.2005

Vrsta sudjelovanja
Plenarno

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
cube packing; second moment; holes; enumeration

Sažetak
We consider tilings and packings of R^d by integral translates of cubes [0, 2[^d, which are 4Z^d-periodic. Such cube packings can be described by cliques of an associated graph, which allow us to classify them in dimensions d<=4. For higher dimensions, we use random methods for generating some examples. Such a cube packing is called non- extendible if we cannot insert a cube in the complement of the packing. In dimension 3, there is a unique non-extendible cube packing with 4 cubes. We prove that d-dimensional cube packings with more than 2^d-3 cubes can be extended to cube tilings. We also give a lower bound on the number N of cubes of non-extendible cube packings. Given such a cube packing and z in Z^d, we denote by Nz the number of cubes inside the cube z+[0, 4[^d and call second moment the average of N_z^2. We prove that the regular tiling by cubes has maximal second moment and give a lower bound on the second moment of a cube packing in terms of its density and dimension.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Mathieu Dutour Sikirić (autor)

Citiraj ovu publikaciju:

Dutour Sikirić, Mathieu; Itoh, Yoshiaki; Poyarkov, Alexei
Torus Cube tiling // ISM Symposium, Stochastic models and discrete geometry, The Institute of Statistical mathematics
Tokyo, Japan, 2005. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)
Dutour Sikirić, M., Itoh, Y. & Poyarkov, A. (2005) Torus Cube tiling. U: ISM Symposium, Stochastic models and discrete geometry, The Institute of Statistical mathematics.
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Itoh, Yoshiaki and Poyarkov, Alexei}, year = {2005}, keywords = {cube packing, second moment, holes, enumeration}, title = {Torus Cube tiling}, keyword = {cube packing, second moment, holes, enumeration}, publisherplace = {Tokyo, Japan} }
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Itoh, Yoshiaki and Poyarkov, Alexei}, year = {2005}, keywords = {cube packing, second moment, holes, enumeration}, title = {Torus Cube tiling}, keyword = {cube packing, second moment, holes, enumeration}, publisherplace = {Tokyo, Japan} }




Contrast
Increase Font
Decrease Font
Dyslexic Font