Pregled bibliografske jedinice broj: 483560
Simple random sequential packing of cubes
Simple random sequential packing of cubes // ISM Symposium, Stochastic models and discrete geometry, The Institute of Statistical mathematics
Tokyo, Japan, 2006. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483560 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Simple random sequential packing of cubes
Autori
Itoh, Yoshiaki ; Dutour Sikirić, Mathieu
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
ISM Symposium, Stochastic models and discrete geometry, The Institute of Statistical mathematics
/ - , 2006
Skup
ISM Symposium, Stochastic models and discrete geometry, The Institute of Statistical mathematics
Mjesto i datum
Tokyo, Japan, 01.03.2006. - 03.03.2006
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
cube packing; second moment; holes; enumeration
Sažetak
We consider sequential random packing of cubes z+ [0, 1]^n with z in (1/N)Z^n into the cube [0, 2]^n and the torus R^n/(2\ZZ^n) as N goes to infinity. In the cube case [0, 2]^n as N goes to infinity the random cube packings thus obtained are reduced to a single cube with probability 1-O(1/N). In the torus case the situation is different: for n=1 or 2, sequential random cube packing yields cube tilings, but for n>=3 with strictly positive probability, one obtains non-extensible cube packings. So, we introduce the notion of combinatorial cube packing, which instead of depending on N depend on some parameters. We use use them to derive an expansion of the packing density in powers of 1/N. The explicit computation is done in the cube case. In the torus case, the situation is more complicate and we restrict ourselves to the case N goes to infinity of strictly positive probability. We prove the following results for torus combinatorial cube packings: * We give a general Cartesian product construction. * We prove that the number of parameters is at least n(n+1)/2 and we conjecture it to be at most 2^n-1. * We prove that cube packings with at least 2^n-3 cubes are extensible. * We find the minimal number of cubes in non- extensible cube packings for n odd and n<=6.
Izvorni jezik
Engleski
Znanstvena područja
Matematika