Pregled bibliografske jedinice broj: 483459
Zigzags and central circuits for 3- or 4-valent plane graphs
Zigzags and central circuits for 3- or 4-valent plane graphs // ISM symposium, stochastic models and discrete geometry, Institute of statistical mathematics
Tokyo, Japan, 2007. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483459 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Zigzags and central circuits for 3- or 4-valent plane graphs
Autori
Dutour Sikirić, Mathieu ; Deza, Michel ; Shtogrin, Mikhail
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
ISM symposium, stochastic models and discrete geometry, Institute of statistical mathematics
/ - , 2007
Skup
ISM symposium, stochastic models and discrete geometry, Institute of statistical mathematics
Mjesto i datum
Tokyo, Japan, 26.02.2007. - 28.02.2007
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Zigzag; central circuit; groups; Goldberg Coxeter construction
Sažetak
A central circuit in a 4-valent plane graph is a circuit of edges, such that no two consecutive edges belong to the same face. A zigzag in a 3- valent plane graph is a circuit of edges, such that any two, but no three, consecutive edges belong to the same face. Using the work of the Bielefeld school, we investigated the zigzag and central-circuit structure of 3- or 4-valent plane graphs, whose faces have gonality p or q. The case q=6 or 4 is of special interest, since it corresponds to faces having zero curvature. I will explain Thurston's formalism for handling those classes of graphs and how in the case of Goldberg- Coxeter construction, one can obtain the full description of the zigzag or central-circuit structure. Then, I will explain, the notion of tightness of graphs and the extremal problems related to it.
Izvorni jezik
Engleski
Znanstvena područja
Matematika