Pregled bibliografske jedinice broj: 483453
Wythoff construction and L1-embedding
Wythoff construction and L1-embedding // Geometric linearization of graphs and groups
Lausanne, Švicarska, 2007. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483453 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Wythoff construction and L1-embedding
Autori
Deza, Michel ; Dutour Sikirić, Mathieu ; Shpectorov, Sergey
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
Geometric linearization of graphs and groups
/ - , 2007
Skup
International conference on Embeddings of Graphs and Groups into Hilbert and Banach spaces with applications
Mjesto i datum
Lausanne, Švicarska, 22.01.2007. - 26.01.2007
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Embedding; Wythoff construction
Sažetak
The Wythoff construction takes a d-dimensional polytope P, a subset S of {; ; ; 0, ..., d}; ; ; and returns another d-dimensional polytope P(S). If P is a regular polytope, then P(S) is vertex-transitive. This construction builds a large part of the Archimedean polytopes and tilings in dimension 3 and 4. We want to determine, which of those Wythoffians P(S) with regular P have their skeleton or dual skeleton isometrically embeddable into the hypercubes Hm and half-cubes (1/2)Hm. We find six infinite series, which, we conjecture, cover all cases for dimension d>5 and some sporadic cases in dimension 3 and 4. Three out of those six infinite series are explained by a general result about the embedding of Wythoff construction for Coxeter groups. In the last section, we consider the Euclidean case ; also, zonotopality of embeddable P(S) are addressed throughout the text.
Izvorni jezik
Engleski
Znanstvena područja
Matematika