Pregled bibliografske jedinice broj: 482353
Analyzing and Modeling of the Influence of Cutting Parameters on the Cutting Force in Face Milling
Analyzing and Modeling of the Influence of Cutting Parameters on the Cutting Force in Face Milling // Trends in the Development of Machinery and Associated Technology - TMT 2010 / Sabahudin Ekinović, Yildirim Uctug, Joan Vivancos Calvet (ur.).
Zenica: Mašinski fakultet Univerziteta u Zenici, 2010. str. 17-20 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 482353 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Analyzing and Modeling of the Influence of Cutting Parameters on the Cutting Force in Face Milling
Autori
Bajić, Dražen ; Celent, Luka ; Jozić, Sonja
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Trends in the Development of Machinery and Associated Technology - TMT 2010
/ Sabahudin Ekinović, Yildirim Uctug, Joan Vivancos Calvet - Zenica : Mašinski fakultet Univerziteta u Zenici, 2010, 17-20
Skup
14th International Research/Expert Conference
Mjesto i datum
Sredozemno more, 11.09.2010. - 18.09.2010
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
face milling; cutting force; regression analysis; radial basis function neural network
Sažetak
The general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. This paper examines the influence of three cutting parameters on the cutting force components during face milling of steel 42CrMo4. The cutting speed, the feed per tooth and the depth of cut have been taken as influential factors. Two modeling methodologies, namely regression analysis and neural networks, have been applied to experimentally determined data. Results obtained by the models have been compared. The research has shown that whit small training dataset, neural networks modeling methodologies are comparable with regression analysis methodology and it can even offer better result, in this case average relative error of 2, 62%.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
023-0692976-1742 - Istraživanje visokobrzinske obrade materijala (Bajić, Dražen, MZOS ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split