ࡱ> bda#`"bjbjmm H= D &E&E&E&EEd 7>jFzHHHH $ $ $;6=6=6=6=6=6=6$9h.<a6 {)#^ ${){)a6HHB7,,,{)bH H;6,{);6,,V35@  5H^F B&E*s5 6$X7075x<S,<5< 5 $Vc%,W&'` $ $ $a6a6, $ $ $7{){){){) $#/$ /  THE BEHAVIOUR OF THE LSPSM IN ASYNCHRONOUS OPERATION Dan STOIA1, Ovidiu CHIRIL1, Mihai CERNAT1, Kay HAMEYER2, Drago BAN3 1 Transilvania University of Brasov, Faculty of Electrical Engineering and Computer Sciences B-dul Eroilor 29, 500036 Brasov, Romania, m.cernat@unitbv.ro 2RWTH Aachen University, Institute for Electrical Machines Schinkelstrae 4, 52062 Aachen, Germany, kay.hameyer@iem.rwth-aachen.de 3University of Zagreb,  INCLUDEPICTURE "http://mail.unitbv.ro/surgeweb/5000658670/10/shared/img/1pixel.gif" \* MERGEFORMATINET Faculty of Electrical Engineering & Computing Unska 3, 10000 Zagreb, Croatia,  HYPERLINK "mailto:drago.ban@fer.hr" drago.ban@fer.hr Abstract The paper proposes a study of synchronization capability of line-start permanent magnet synchronous motor with small saliency ratio and very high cage resistance. The design method is exemplified for a motor with the rated power of 3.5kW, the synchronous speed of 3000rpm, and the saliency ratio of 1.08. Key words: AC machine, Permanent magnet motor, Synchronous motor, Design, Simulation, Efficiency, Power factor correction. List of notations bM0 no-load leakage flux coefficient of PM; b0S stator slot opening; BSy - stator yoke flux density (average value); Brem remanent flux density of PMs; B - air gap flux density (average value); B0  no-load air gap flux density (average value); Cp - permeance coefficient; C - magnetic flux concentration factor; DC - cage damping factor (complex magnitude); DM - PMs damping factor (real magnitude); DSin - inner stator diameter; fS - stator electrical frequency; ft - frequency of the tooth ripple flux; h2 rotor tooth high; hSy - effective high of the stator yoke; Hc - coercive magnetic field intensity; IS - stator current;  EMBED Equation.3  - rotor cage current related to the stator; IM - stator current produced by the PMs; kC Carters coefficient; kFe - stator lamination stack coefficient; ksat - saturation coefficient;  EMBED Equation.3  - fundamental stator winding factor; kM  leakage flux coefficient of PMs; laM  length of PMs in axial direction; lFe  stator lamination stack length in axial direction; lM  length of PMs in magnetizing direction; ND - number of rotor slots; NS - number of stator slots; p - number of pole pairs; RS - stator winding resistance; RB - cage bar resistance; RD - rotor (damper) resistance;  EMBED Equation.3  - rotor resistance related to the stator; RDd, RDq- rotor resistance in d-q frame; Rer - resistance of end rings; s - slip between the stator rotating field and the rotor ; s0 - initial slip value; sKb - critical slip value of the breaking torque; sKC - critical slip value of the cage torque; tB barrier width; tS stator teeth width TC - cage torque; TM br - breaking torque produced by PMs; Tp - pulsating torque; TpC - pulsating component of the cage torque; TpM - pulsating component of the magnet torque; U - supplying voltage, rms value; Ue0 - back EMF, rms value; wS - stator phase winding number; Xd, Xq - synchronous reactance in d-q frame;  EMBED Equation.3  - rotor leakage reactance related to the stator; Xm - main reactance; XS - stator leakage reactance; Z - input impedance; M  PM coverage;   air gap length M  permeance of PMs; r - permeance of the rotor teeth and of PM flux barriers;   air gap permeance; 0 - vacuum permeability; rec - recoil relative permeability of PM; p - pole pitch;  - saliency ratio; C - cage angular frequency; S - stator angular frequency; I. Introduction The line-start permanent magnet synchronous motor (LSPMSM) represents an interesting, energy saving, and high efficient alternative for asynchronous motors used in low-cost electric drives, where the usage of current controlled voltage source inverters is too expensive. Even, in these simple drives, the design considering the dynamic behaviour is important, because every good line-start motor has to be able to synchronize under load after line-starting. For asynchronous line starting, the rotor contains an aluminium cage, which plays a role during every transient process. The rotor contains magnetic flux barriers on its direct axis (for amplifying the saliency) and non-magnetic flux barriers on its quadrature axis (for minimizing the inter-pole PM leakage flux). The PMs inserted as magnetic flux barriers are located in the rotor back iron, bellow the squirrel-cage. The stator structure is the same as that of an ordinary induction machine. In order to evaluate the LSPMSMs line starting performances, when coupled at different loads and fed by different supply voltages, a reliably dynamic model of the motor is required because its line-starting and synchronization capabilities depend on various design parameters (e.g. squirrel cage design and material, design of magnetic flux barriers, placement of PMs, etc.). The paper proposes a study of synchronization capability of LSPMSM with small saliency ratio and very high cage resistance. The design method is exemplified for a motor with the rated power of 3.5 kW, the synchronous speed of 3000 rpm, and the saliency ratio of 1.08. 2. The main design parameters The line-start property is obtained thanks of the rotor design. For the purpose of reducing the space occupied by PMs and making sure that the power density is enough high, sintered NdBFe magnets are used. The PM volume mainly relies on the following factors: the operating point of PMs; the maximal energy produced by the PMs; the back EMF; the leakage coefficient; the magnetic saturation coefficient. The PM dimensions may be determined and optimized by a combined graphical and analytical method in order to obtain the no-load voltage to choose as input design parameter. According to the imposed magnetic energy curve of PMs and the very little space between the PM and squirrel cage (because of the position of PM into the rotor), the expected energy utilization ratio could be estimated through the operating point of PM in the rotor magnetic circuit [1]:  EMBED Equation.3  (1) where the permeances are expressed by:  EMBED Equation.3  (2)  EMBED Equation.3  (3)  EMBED Equation.3  (4) By taking into account the magnetic saturation of the iron, the air gap flux density at no-load operation can be expressed as [1],  EMBED Equation.3  (5)  EMBED Equation.3  (6)  EMBED Equation.3  (7)  EMBED Equation.3  (8)  EMBED Equation.3  (9) It is note that the leakage coefficient of PM kM and the performances of the motor are all influenced by the size of PMs, which becomes a very important parameter of the machine. For the sizing procedure, the air-gap flux density can be initially estimated as  EMBED Equation.3  (10) and during this sizing procedure the coverage coefficient M and the leakage flux coefficient of PM bM0 will be determined by iteration taking into the magnetizing curve and maximizing the density of the magnetic energy of the PM [1]. The length of the PM in the magnetizing direction results [1]:  EMBED Equation.3  (11) In this way, the back EMF can be expressed as [1]:  EMBED Equation.3  (12) and it is direct proportional to the remanent flux density of PMs. The value of Brem depends on the producer and of the temperature, too. So, the value of the back EMF depends of the armature winding temperature. The effective high of the stator yoke can be iteratively obtained from the following equation [9]:  EMBED Equation.3  (13) For machines with a small number of poles pairs, the height and the length (the radial and axial dimensions) of the stator yoke are small and the magnetic flux density is high, but it have to be limited to 1.8 T. The design of the squirrel cage mainly contains the selection of slot number and the dimensioning. The squirrel cage influence on the starting ability of the motor is given by the slot number and the cage resistance. The influence of the eddy currents in rotor ends of the skin effect into the cage end rings is taken into account by the coefficient ksk, introduced as follows. If the bars are equal distributed on the rotor circumference, the equivalent resistance of the rotor bars including the rotor end rings can be expressed by [9]:  EMBED Equation.3  (14) For taking into account the rotor bar current influence of the fundamental space harmonic of the air-gap magnetic flux density, a coefficient named ksk was introduced:  EMBED Equation.3  (15) 3. The torques of the LSPMSM in asynchronous operation For designing purposes, in this paper the cage resistance is chosen very high. This means that the slope of the asynchronous torque near synchronous speed is very low, and the starting current will be small. Due to the presence of the magnetic breaking torque, the effective slope or the damping constant D have values that are much dependent of the no-load voltage. In these conditions, the synchronization occurs at increased values of the slip. Therefore, more energy is needed to synchronize the motor and a lower value of the critical load torque is obtained. For satisfactory damped oscillations, in synchronous operation period, am optimum can be found for the no-load voltage to maximize the critical current. Therefore, by decreasing the volume of the permanent magnets ob obtain a better synchronization capability, and a high value of the product efficiency power factor. During asynchronous operation of the LSPMSM the run-up torque is comprised basically of a steady time average torque (no vibratory torque) and a pulsating torque TP. The average torque is comprised of two components called the cage torque TC and the magnet torque TM. During asynchronous operation, the magnet torque has a pulsating component TpM with the frequency sfS, where s is the slip between the stator rotating field and the rotor and fS is the stator electrical frequency. The pulsating magnet torque TpM arises from the interaction between magnets and the cage [15, 18]. The cage torque TC of a LSPMSM has two principal oscillating components, one has the frequency 2sfS due to the mechanical reluctance variation, and the other has the frequency sfS due to the magnetic saturation. The mechanical reluctance variation caused by the saliency of the rotor geometry generates a reluctance torque and an asynchronous starting torque that pulsate with the frequency 2sfS during asynchronous operation. The magnetic saturation, which is caused by the PM flux, generates another collateral reluctance variation which result is a pulsation with the frequency sfS. This special torque pulsation appears only in the LSPMSM. During the design stage, for optimizing the starting torque characteristic, a separate treatment of the two torque components, the driving asynchronous cage torque and the braking magnet torques, is helpful. In this way, from the basic equations expressed in d-q reference frame, it can be expressed a few mainly parameters which affect the sensitivity of the synchronization capability. Thus, the rotor cage reaction on the primary field can be defined by the complex field damping factor:  EMBED Equation.3  (17) The cage torque can be written as  EMBED Equation.3  (18) The flux of the PMs will produce the current IM in the stator winding  EMBED Equation.3  (19)  EMBED Equation.3  (20) and will cause the breaking torque  EMBED Equation.3  (21) In the previous relations, following notations have been used: the subscripts d and q represent direct and quadrature axis stator quantities, respectively, while notation D represents rotor cage quantities; the primed value signify rotor quantities related to the stator winding data via a transformer ratio; R is the winding resistance; Xm and X are the main reactance and the leakage reactance, respectively. The critical electrical speed at which the asynchronous torque achieve the maximum value is given by:  EMBED Equation.3  (22) The critical slip value for obtaining the maximum breaking torque is:  EMBED Equation.3  (23)  EMBED Equation.3  (24a, b) The stator winding resistance R1 is an important parameter in the asynchronous operation. The average torque Tav which amplifies the half synchronous speed dips can be minimized by using a minimum admissible value for the stator resistance. The input equivalent impedance is:  EMBED Equation.3  (25) From the equivalent scheme it can be obtained  EMBED Equation.3  (26) The cage torque can be written as  EMBED Equation.3  (27) The starting process can be approximately divided into three stages: The accelerating process: the rotor accelerates from standstill. In this stage the armature current is high and average asynchronous torque and average braking torque will be touch maximum values. In general, the critical slip of the asynchronous torque sKc is higher than the critical slip of the breaking torque sKb. In this stage will present the classical dip at half synchronous speed, in a similar way to the Georges phenomenon in induction motors unsymmetrical rotor. This dip can be minimized by using lower resistance rotor bars or almost symmetrical cage rotors (i.e. RDdH"RDq). Pulling into the synchronization: period: in this stage the average torque attains the zero value corresponding to an initial slip s0. The motor goes into damped oscillation procedure. Synchronous operation period: if the average torque, decreases the rotor tries to pull-in under the influence of the pulsating and magnet torques components which acts as steady-state in this stage. The rotating magnet produced of complex set of pulsating not only higher that the TpC but also they have a permanent persistence. The design method is exemplified for a motor with the rated power of 3.5 kW, the synchronous speed of 3000rpm, and the saliency ratio of 1.08. The values of principal parameters were: UN = 108V; Ue0 = 97.2V; RS = 0.45;  EMBED Equation.3  XS=0.34;  EMBED Equation.3  Xd = 2.6; Xq=2.81; Xm = 2.36. Fig.1 presents the average torque, pulsating cage torque and pulsating magnetic torque versus time. Fig.2 presents the electromagnetic torque versus time. Conclusions The LSPMSM design was optimized for maximum power density. The volume of the PM is relatively small, the resistance of the squirrel cage is relatively large, the effect is a reduced internal angle and consequently a relatively high power factor. The main disadvantage of this motor is the reduced overcharge capability (cca 1.5). Only no-load starting is recommended.  Fig. 1. Average torque, pulsating cage torque and pulsating magnetic torque versus time. Fig. 2. Electromagnetic torque versus time. References D.Stoia, M.Cernat, Design of Line-Start Permanent Magnet Synchronous Motors, ICIE 2009, Vilnius, Lituania, May 2009. D.Rodger, H.C.Lai, R.J.Hill-Cottingham, P.C.Coles, and F.Robinson, A new high efficiency line start motor with high starting torque, PEMD 2006, Dublin, Ireland, pp. 551555, April 2006. D.Wang, X.Wang, H.Chen, R.Zhang, Matlab/Simulink-Based Simulation of Line-start PMSM Used in Pump Jacks, ICIEA 2007, Harbin, China, pp. 1179-1181, May 2007. E.Peralta-Sanchez and A.C.Smith, Line-start permanent-magnet machines using a canned rotor, IEMDC2007, Antalya, Turkey, vol. 2, pp. 10841089, May 2007. G.Yang, J.Ma, J.X.Shen, and Y.Wang, Optimal Design and Experimental Verification of a Line-Start Permanent Magnet Synchronous Motor, ICEMS 2008, Wuhan, China, pp. 3232 3236, Oct. 2008. H.Nam, S.B.Park, G.H.Kang, J.P.Hong, J.B.Eom, and T.U.Jung, Design to Improve Starting Performance of Line-Start Synchronous Reluctance Motor for Household Appliances, IEEE IAS Ann. Meet. 2004, Seatle, USA, pp.79-85, Oct. 2004. J.Salo, T.Heikkila, J.Pyrhonen, New low-speed high-torque permanent magnet synchronous machine with buried magnets, ICEM 2000, Espoo, Finland, vol.2, pp.1246-1250, Aug. 2000. J.Soulard and H.P.Nee, Study of the synchronization of line-start permanent magnet synchronous motors, IEEE IAS Annual Meeting 2008, Edmonton, Alberta, Canada, vol.1, pp. 424431, Oct.2008. K.Kurihara and A.Rahman, High-efficiency line-startjl~B   / z   J S j k ɾɾr`#jh%hd-hUmH sH h%hd-h0J5mH sH jh%hd-hUmH sH h%hd-hmH sH h%hd-hH*mH sH h%hd-hCJ]aJh%hd-hCJ\aJh%hd-hCJaJh%hd-hCJH*aJh%hd-hCJH*aJh%hd-hCJaJ h%hd-hh%hd-h5CJaJ!jl a s *$ 71$a$gdd-h 71$gdd-h $P1$a$gdd-h $1$`a$gdd-h$1$`a$gdd-hx1$gdd-h $x1$a$gdd-h1$gdd-h $1$a$gdd-h!  X _ u y   _ a s t u Ĵĩĩĩĝĩ|ĩĝĩpdVh%hd-h6CJH*aJh%hd-h6CJaJh%hd-h:CJaJhlhd-h5CJaJhwhd-h5CJaJhd-h5CJaJh%hd-h5CJaJhd-h56CJaJh%hd-h56CJPJaJh%hd-h56CJaJ h%hd-hh%hd-hmH sH jh%hd-hUmH sH h%hd-h0JmH sH  u v z *,.&(*z|~345VWXƻԖƻhZURhd-hCJH*aJh%hd-h6>*CJaJhbUhd-hCJaJhd-h6CJH*aJh%hd-h6CJH*aJh%hd-h6CJaJhd-hCJaJh%hd-hCJaJh%hd-hCJH*aJ9&z3VAjj0$ 71$^`a$gdd-h 71$gdd-h$ 71$a$gdd-hABCjklĶҧҕxxlxҧZ#jNN h%hd-hCJUVaJh2: hd-hCJH*aJh%hd-h6CJaJ!j]h%hd-hCJEHUaJ#jN h%hd-hCJUVaJjh%hd-hCJUaJh%hd-h6CJH*aJh%hd-h6>*CJaJh%hd-hCJaJhd-hCJaJhZURhd-h6CJH*aJhZURhd-h6CJaJ jlp,024;<=UVW`iuvȼȮȢԚԚȮȮȮȮȌȮԚz#jN h%hd-hCJUVaJh2: hd-h6CJH*aJhd-hCJaJh2: hd-hCJH*aJh%hd-h6CJH*aJh%hd-hCJH*aJh%hd-h6CJaJh%hd-hCJaJjh%hd-hCJUaJ!jh%hd-hCJEHUaJ*;Uu;U 7e!j 71$gdd-h$ 71$^`a$gdd-h$ 71$a$gdd-h;<=UVX !"78:efhȽȽȯԣȯԃȯȯȯȯȯȯȯhd-h6CJaJhr2hd-hCJaJhr2hd-hCJH*aJhr2hd-h6CJaJh%hd-h6CJH*aJhd-h6CJH*aJh%hd-h6CJaJh%hd-hCJaJjh%hd-hCJUaJ!jh%hd-hCJEHUaJ3!"5678jkl<>hnrv>H^bۮۉۉۉ}ۉhB@hd-hCJH*aJhd-hCJaJhLhd-hCJH*aJ!jh%hd-hCJEHUaJ#jN h%hd-hCJUVaJjh%hd-hCJUaJh%hd-h6CJaJh%hd-hCJaJh%hd-hCJH*aJh%hd-h6CJH*aJ1j<f\>fJB ! $1$`a$gdd-h $P1$a$gdd-h 71$^`gdd-h 71$gdd-h$ 71$a$gdd-hhj5;EHIKWXjm&/0BCISY^bcfiy{.? D!K!a!e!!!!!!!!!b"d""""hd-hCJaJh%hd-hCJaJh%hd-h:CJaJh%hd-h6CJH*aJh%hd-hCJaJO!!0"""#9#G#`##3$S%q%%%%%s&&&&&'1$gdd-hgdd-h1$gdd-hgdd-h & F1$gdd-h $1$`a$gdd-h $P1$a$gdd-h"" ##*#,#4#6###$1$3$P%S%T%U%h%i%j%k%q%%%%%%%%%%%%%%%%%%%%%µۦۊ}yyjj:N hd-hUVmH sH hd-hj5h%hd-hEHUjN hd-hUVmH sH j h%hd-hEHUjN hd-hUVmH sH j h%hd-hEHUjN h%hd-hUVjh%hd-hU h%hd-hhuhd-hCJaJh%hd-hCJaJhd-hCJaJ)%%%%r&s&t&u&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&µܧ܋~pcjh%hd-hEHUjON h%hd-hUVjh%hd-hEHUjN hd-hUVmH sH jOh%hd-hEHUjN h%hd-hUVjPh%hd-hEHUjN hd-hUVmH sH huhd-hmH sH  h%hd-hhd-hjh%hd-hUjhZURhd-hEHU&&&&&&&'''/'1'2'((((((() )t)v))))))))))))^*`*r****ûïûûûûyrhrrh }hd-h6H* h }hd-hjx$huhd-hEHUjN hd-hUVmH sH h%hd-h6H*mH sH h%hd-hH*mH sH h%hd-h6mH sH hd-hmH sH h%hd-hmH sH hd-hj h%hd-hEHUjRN h%hd-hUV h%hd-hjh%hd-hU'' )))+%,C,v,,i---./>000111234v56 1$`gdd-hgdd-hgdd-h`gdd-hgdd-h1$gdd-h**********d+++++, ,%,&,',:,;,<,=,@,A,C,F,J,v,w,x,,,,,,,,,,,,źŧřŧ}pŲj)h%hd-hEHUjN hd-hUVmH sH j5'h%hd-hEHUjRN h%hd-hUVjh%hd-hUhd-hmH sH h%hd-hmH sH  h%hd-hhd-h h }hd-h huhd-hhuhd-hH* hd-h6H*h }hd-h6H*h }hd-h6*,,,------E-F---------------....//!0"0$0000000011c1d1k1l1~1˱ˠڠˑyˠˠhdhd-hmH sH j/hdhd-hEHUjN hd-hUVmH sH hd-hj,h%hd-hEHUj{N hd-hUVmH sH jh%hd-hU h%hd-hhd-hmH sH h%hd-hmH sH h%hd-h6H*mH sH h%hd-h6mH sH /~11111111111111/303666e6f6g6~66666666666666273747u7v7w7x77778 8!8n8q8r8I9ʽ㲦hd-h6H*mH sH hd-hmH sH h%hd-h6H*mH sH h%hd-h6mH sH h%hd-hmH sH jA2h%hd-hEHUj{ON h%hd-hUVjh%hd-hU h%hd-hh%hd-h6H*h%hd-h6hd-h46Y77G:;5<S<u<<<<=9=W=?Y@v@@@@AB0B^B|BBBgdd-hgdd-h $1$a$gdd-hgdd-h1$gdd-hI9L9M9: : :;;J;M;5<6<7<J<K<L<M<S<u<v<w<<<<<<<<<<<<<<<<<< =˲˗|oj5:h%hd-hEHUjKN h%hd-hUVjw7h%hd-hEHUj5N h%hd-hUVj4h%hd-hEHUj~N h%hd-hUVjh%hd-hU h%hd-hhd-hmH sH h%hd-hmH sH h%hd-h6H*mH sH h%hd-h6mH sH & =====9=:=;=N=O=P=Q=W=====>>??R?T?V?`?b?d?Y@Z@m@n@o@p@v@w@@@ҹҡ{m`\hd-hj1Bh%hd-hEHUjKN h%hd-hUVh%hd-hH*mH sH h%hd-h6H*mH sH h%hd-h6mH sH h%hd-hmH sH j?h%hd-hEHUj LN h%hd-hUVh%hd-hCJaJ h%hd-hjh%hd-hUj<h%hd-hEHUjOKN h%hd-hUV$@@@@@@@@@@@@iAjAlAAABBB'B(B)B*B0B^B_B`BsBtBuBŸwj\OjNh%hd-hEHUj^LN h%hd-hUVjKh%hd-hEHUjjN hd-hUVmH sH h%hd-h0JmH sH h%hd-h6H*mH sH h%hd-h6mH sH h%hd-hmH sH jIh%hd-hEHUj3KN h%hd-hUVjh%hd-hUjDKELEMEFFF FGGGHHHH I IZI^I⼰}qc[[hd-hmH sH h%hd-h6H*mH sH h%hd-h6mH sH h%hd-hCJH*aJhDhd-h6CJH*aJhd-h6CJH*aJh%hd-h6CJH*aJh%hd-h6CJaJh%hd-hCJaJjQh%hd-hEHUjLN h%hd-hUVh%hd-hmH sH  h%hd-hjh%hd-hU#BCFGH IIJKLLKLMMMMMMM N NN $P1$a$gdd-h $1$a$gdd-h1$gdd-h $P1$a$gdd-hgdd-h $ & F1$a$gdd-h1$gdd-h^IwIxI}IIIIIIIIIIIIIIIJJ.J0J2J4J6J8J:JJPJRJxJzJӻwlcXj6N hd-hUVhd-hH*mH sH hd-h6H*mH sH !jmTh2: hd-hCJEHUaJj$N hd-hUVh%hd-hCJaJjh%hd-hCJUaJhr2hd-h6H*mH sH hDhd-hH*mH sH h%hd-hH*mH sH h%hd-h6H*mH sH h%hd-h6mH sH hd-hmH sH h%hd-hmH sH  zJ|J~JJJJJJJJJJJJJJJJJKKKKKLLLLMMMMMMȺȺȺԣԜԃԃwlWlWl(jh%hd-hCJUaJmHnHuh%hd-hCJaJh%hd-h:mH sH hd-hmH sH h%hd-hOJQJ^Jhd-h h%hd-hh2: hd-hCJaJh%hd-hH*mH sH h%hd-h6H*mH sH h%hd-h6mH sH h%hd-hmH sH jh%hd-hCJUaJ!jVh2: hd-hCJEHUaJ!MM NNkNvNNNO(OOOOOXP^PbP'Q,Q-Q1QR%R&R*RRRRRRRRqSST3I<ABFpq8OPTVq(/VȗcnoȼȼȮȼȼȮȼȼȮȼȼȼȮȮȬȮȼȼȤȮȼȘȘȘȘȼh%hd-hCJ\aJhd-hCJaJUh%hd-h6CJ]aJh%hd-h6CJaJh%hd-hCJaJ!h%hd-h56:CJPJaJh%hd-hCJaJ h%hd-hCJOJQJ^JaJ<NNTOOP]QNRSSwp/Ùٛ7gdd-h$ & F1$7$8$H$a$gdd-h interior permanent-magnet synchronous motors, IEEE Trans. Ind. Appl., vol. 40, no. 3, pp. 789796, May/Jun. 2004. I.Tsuboi, I.Hirotsuka, T.Takegami, and M.Nakamura, Basic Concept of an Analytical Calculation Method and Some Test Results for Determination of Constant of Line Start Permanent Magnet Motor, ICEMS 2008, Wuhan, China, pp.3108-3111, Oct. 2008. M.Popescu, T.J.E.Miller, M.McGilp, D.M. Ionel, S.J.Dellinger, A Unified Approach to the Synchronous Performance Analysis of Single and Poly-Phase Line-Fed Interior Permanent Magnet Motors, IEEE IAS Annual Meeting 2007, New Orleans, Louisiana, USA, pp.148 153, Sept. 2007. Q.F.Lu and Y.Y.Ye, Design and Analysis of Large Capacity Line-Start Permanent-Magnet Motor, IEEE Trans. Magnetics, Vol. 44, No. 11, Nov. 2008, pp 4417-4420. W.H.Kim, K.C.Kim, S.J.Kim, et al., A Study on the Optimal Rotor Design of LSPM Considering the Starting Torque and Efficiency, IEEE Trans. Magnetics, Vol. 45, No. 3, March 2009, pp. 1808-1811. Z.Bingyi, Z.Wei, Z.Fuyu, F.Guihong, Design and Starting Process Analysis of Multipolar Line-Start PMSM, Proc. ICEMS 2007, Seoul, Koreea, pp. 1629-1634, Oct. 2007. V.B.Honsinger, Permanent Magnet Machines: Asynchronous Operation, IEEE, Vol. PAS-99, No. 4 July/Aug 1980, pp. 1503-1509. B.Zhang, W.Zhang, F.Zhuang, G.Feng, Design and Starting Process Analysis of Multipolar Line-Start PMSM, Proc. ICEMS 2007, Seoul, Korea, pp 1629-1634, Oct. 2007. A.Abbas, H.A.Yousef, O.A.Sebakhy, FE Parameters Sensitivity Analysis of an Industrial LS Interior PM Synchronous Motor, 2008 IEEE PES General meeting, Pittsburgh, Pennsylvania, USA, pp. 1-6, July 2008 M.Rahman, A.Osheiba, T.Radwan, Synchronization process of line-start permanent magnet synchronous motor, Electric Machines and Power Systems,  HYPERLINK "http://www.ingentaconnect.com/content/tandf;jsessionid=2g5498ngj3hod.alice" \o "Publishers Home Page" Taylor and Francis Ltd, vol.25, pp. 577-592, 1997. J.F.Gieras, M.Wing, Permanent magnet motor technology, Marcel Dekker Inc. New York, 2002. D.Stoia, M.Cernat, K.Hameyer, Dr.Ban, Line-Start Permanent Magnet Synchronous Motors Analysis and Design, EDPE 2009, Dubrovnik, Croatia, , paper T02-014, Oct. 2009. 0 0.1 0.2 0.3 0.4 0.5 0.6 -80 -60 -40 -20 0 20 40 60 Time[s] Torque [Nm] Tav averaged torque Tpc pulsating cage torque Tpm pulsating magnet torque 80 0 0.1 0.2 0.3 0.4 0.5 0.6 -100 -80 -60 -40 -20 0 20 40 60 80 100 Time[s] Torque [Nm] Te electromagnetic torque orsřڙEd .01Ͳ͒zvgh!hd-hB*CJaJphhd-hh%hd-hCJaJh%hd-h0JCJaJjh%hd-hCJUaJ h%hd-h56CJ\]aJh%hd-h6CJ\]aJh%hd-hCJ]aJh%hd-hCJaJh%hd-hCJPJaJh%hd-h6CJPJaJh%hd-h6CJaJ$  "#$&'(,/}#hZhd-h5B*CJ\aJph&hZhd-h56B*CJ\aJph hNKbhd-hhNKbhd-hB*CJaJph hShd-hhShd-hB*CJaJphhd-hB*CJaJph h!hd-hh!hd-hB*CJaJphhd-hh!hd-hCJaJ0  #$'(01=gdd-h/017=>STUuvw÷÷÷񫜕}ncncncncncnhohd-hCJaJhohd-hB*CJaJphhohd-hCJhohd-hB*CJaJph hNKbhd-hhNKbhd-hB*CJaJphhd-hB*CJaJphhZhd-h6CJaJ&hZhd-h56B*CJ\aJphhZhd-h5CJaJhZhd-h56CJaJhd-hhZhd-hCJaJ&=>TUvwŝƝʝgdd-hÝĝŝƝǝȝɝʝ˝̝͝ΝϝНѝҝӝԝ՝֝ם؝ڝ۝ܝޝߝ#hZhd-h5B*CJ\aJph&hZhd-h56B*CJ\aJphhrhd-hCJaJhrhd-hB*CJaJphhohd-hCJhQhd-hCJhohd-hB*CJaJphhd-hB*CJaJphhd-hhohd-hCJaJ/ʝ˝ϝНԝ՝ם؝۝ܝߝ !"gdd-h !"÷hYnhZhd-h6CJaJ&hZhd-h56B*CJ\aJphhZhd-h5CJaJhZhd-h56CJaJhd-hhZhd-hCJaJ 6&P 1:pYn. A!n"n#$% = 0&P 1:pYn. A!n"n#$% P T9 0&P 1:pYn. A!n"n#$% T= 0&P 1:pYn. A!n"n#$% P TDdR  S .A1pixelb$^V_i3D{n$^V_i3PNG  IHDR;ٺ0PLTEɯ>tRNS AbKGDH cmPPJCmp0712Om IDATcP"!3#IENDB`DyK drago.ban@fer.hryK 0mailto:drago.ban@fer.hr)Dd Tb  c $A? ?3"`?2su .v]0m O{`!Gu .v]0m  HXJxcdd``f 2 ĜL0##0KQ* WätQRcgbR qР{@ UXRY,@1[i % d7 `L ! ~ Ay ?'Ei !f22zpUFn/? PPC= ^4hsC0&dT208ͤ KXB2sSRs"6~.Ob$Xt9[ 1d#7wS.Ps4j.#FA\P0``ÚI)$5!d.P"CX؅ P`3Dd @b  c $A? ?3"`?2}$ =RP>ҼkY {`!Q$ =RP>ҼkBh xcdd``Vdd``baV d,FYzP1n:&&! KA?H1@qC0&dT20ͤ KXB2sSRs"6~.ObxUsi# `Wb1Bܤ\op?]ln1$b.#\q .Ps4ݽ  "*pBZCF&&\ s: @.|/Āf %rʔDd Xb   c $A ? ?3"`?2 <[AJ9C5 {`! <[AJ9C (xڝR=KAM_pZ ja%D0&m=L ^gme`ka!XOv 6 ;'icvg޾&?era7B"0 CfuyY x`$!)ldY5QN ~ɯ ruiӄz%ڳB3/]:D] w╏aQn[k2u֜ușA_&1UOqb[ʂ:*P%v,]zE۪ 8sʹ.F2$_eobbbE>k챋$v)u} T1_ ڤ b UM+$ W_6n1Dd |lb   c $A ? ?3"`?2"6׼Oֈ&s $ {`!"6׼Oֈ&s $` xcdd``$d@9`,&FF(`Ts A?dmb.)@=P5< %! 8 :@u!f0}`a,Q.;31v! @Hfnj_jBP~nbC@<;mLF]F\ ΕDƅ ~ VB;<~ג lO6G6;r0? W&00rry&_{a_/b|L ~. O%zS;c#ĝXOR78Ra? 2   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXZ[\]^_`cfghjikmlnpoqrstuwvxyz{|}~Root Entry F\Be@Data YCYWordDocumentObjectPool 1B\B_1322834376|F1B1BOle CompObjfObjInfo "#&)*+.12589:=@ADGHIJMPQTWXYZ[^abehilopqruxyz} FMicrosoft Equation 3.0 DS Equation Equation.39q&)d> I D' FMicrosoft Equation 3.0 DS EqEquation Native B_1322864317 F1B1BOle CompObj fuation Equation.39q+\\ k wS(1) FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo Equation Native  G_1322776993cF1B1BOle  CompObj fObjInfoEquation Native ;_1322777074F1B1B l R D' FMicrosoft Equation 3.0 DS Equation Equation.39q#X X D' FMicrosoft Equation 3.0 DS EqOle CompObjfObjInfoEquation Native ?_13228446911F1B1BOle CompObjfObjInfouation Equation.39q{(  C p = rec   + r  M FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native _13228965226F1B1BOle CompObj fObjInfo! Equation Native !_1322896533O$F1B1BOle $/k   = 0  M  p l Fe 2k C FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj#%%fObjInfo&'Equation Native (_1322895674)F1B1B-$^  r = 0  rec  M t B l Fe 2h 2 FMicrosoft Equation 3.0 DS Equation Equation.39qOle ,CompObj(*-fObjInfo+/Equation Native 0~`l  M = 0  rec B rem /H c FMicrosoft Equation 3.0 DS Equation Equation.39qUk B 0 =_1322908870E.F1B1BOle 3CompObj-/4fObjInfo06Equation Native 7_13228446293F1B1BOle ;CompObj24<fC  1+ rec k C k M k sat C p B rem FMicrosoft Equation 3.0 DS Equation Equation.39qn1to C  =2ObjInfo5>Equation Native ?_1322905829",8F1B1BOle B M /1+ M () FMicrosoft Equation 3.0 DS Equation Equation.39q )k k M =1+4l M  reCompObj79CfObjInfo:EEquation Native F(_1322864528^J=F1B1Bc  M  p ln1+(1" M ) p [] FMicrosoft Equation 3.0 DS Equation Equation.39q|8fT k C =tOle KCompObj<>LfObjInfo?NEquation Native O S /t S " S () FMicrosoft Equation 3.0 DS Equation Equation.39q5m$^  S =4b 0S 2_1322865378;BF1B1BOle RCompObjACSfObjInfoDUEquation Native VQ_1322908918GF1B1BOle \CompObjFH]fQP()tan "1 b 0S 2()"ln 1+b 0S 2() 2 [] FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoI_Equation Native `_1322865335LF1B1BOle c%k b M0 =B 0 B rem =0.75"0.9 FMicrosoft Equation 3.0 DS Equation Equation.39qz`to l M =2CompObjKMdfObjInfoNfEquation Native g_1322896783QF1B1Bb M0 /1"b M0 () FMicrosoft Equation 3.0 DS Equation Equation.39qHto U eM =4.44fk wS(1) wOle jCompObjPRkfObjInfoSmEquation Native n$ S b M0 B rem  p  M l Fe k M FMicrosoft Equation 3.0 DS Equation Equation.39q)k h Sy =_1322896507VF1B1BOle sCompObjUWtfObjInfoXvEquation Native w_1322895822'T[F1B1BOle {CompObjZ\|fD Sin  M B  4pk Fe B Sy FMicrosoft Equation 3.0 DS Equation Equation.39qTto R D =RObjInfo]~Equation Native _1322864507`F1B1BOle  B +R er N D (2p) 2 FMicrosoft Equation 3.0 DS Equation Equation.39qJ  k sk =R B /R DCompObj_afObjInfobEquation Native f_1322745550heF1B1BOle CompObjdffObjInfogEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39q{8L D C =R D' +jsX D' R D' +js(X m +X D' )_1322773301jF1B1BOle CompObjikfObjInfol FMicrosoft Equation 3.0 DS Equation Equation.39q .k T C =3p2 S U 2 X m2 D C  2Equation Native _1322863610roF1B1BOle CompObjnpf FMicrosoft Equation 3.0 DS Equation Equation.39qYT I M ="1"s() 2 X q U e0 /D MObjInfoqEquation Native _1322863439tF1B1BOle CompObjsufObjInfovEquation Native _1322863625yF1B1B FMicrosoft Equation 3.0 DS Equation Equation.39qŽY,] D M =R S2 +1"s() 2 X d X q FMicrosoft Equation 3.0 DS EqOle CompObjxzfObjInfo{Equation Native uation Equation.39q~Y,] T Mbr ="3p S R S I M2 FMicrosoft Equation 3.0 DS Equation Equation.39q_1322863378m~F1B1BOle CompObj}fObjInfo/xx,]  C =s KC  S == S  R D' () 2 R S2 +(X m +X S ) 2 [](X m X S +X m X D' +X D' Equation Native K_1322844965F1B1BOle CompObjfX S ) 2 +R S (X m +X S )  FMicrosoft Equation 3.0 DS Equation Equation.39q´X-4l s Kb =1ObjInfoEquation Native _1322863411F1B1BOle " 1.5"1()+ 1.5"1() 2 +  FMicrosoft Equation 3.0 DS Equation Equation.39qx؃̭ =X q /CompObjfObjInfoEquation Native _1322891370F1B1BX d ;=R S /X d FMicrosoft Equation 3.0 DS Equation Equation.39qpek Z=R S +jX S +jX mOle CompObjfObjInfoEquation Native  D C FMicrosoft Equation 3.0 DS Equation Equation.39qiT "I 2' =I 1 jX m D C R D'_1322863710wF1B1BOle CompObjfObjInfoEquation Native _1322863750F1B1BOle CompObjf s+jX m D C FMicrosoft Equation 3.0 DS Equation Equation.39q¡\ T C =3p S R D' ObjInfoEquation Native _1322895396@YF1B1BOle sI 2' () 2 FMicrosoft Equation 3.0 DS Equation Equation.39q@f$^ R D' =0.45;CompObjfObjInfoEquation Native \_1322895414F1B1BOle CompObjfObjInfoEquation Native d FMicrosoft Equation 3.0 DS Equation Equation.39qHZto X D' =0.252;Oh+'0$ 8D d p |l nv0o8021)W2Lԡ"4^1/Dd Db   c $A ? ?3"`?2R>ðShQwĎRy{`!R>ðShQwĎRx xxڥR=KAy-D,XH "PIaDINceca]hPswr`c9۝73qVXZ}yF?:FJI4Ix$RVJ},J=7# IG{.9ШDkӞ#-Jv/[S+gtNdn$Lq5oc ͷkEz#!}~ɋC q\eg|ϛbx~~xyWŀGϋ?rX^;^09֬7Y_:Zoa6 dbe:)Oyr@Maow$Du#tm4=UȈ)80{&uDd ,b   c $A ? ?3"`?2Zc:WV{`!Zc:WV@ haxcdd``ngd``baV d,FYzP1n: UrAS58僭iv0o8021)W2ԡ"|b@#3X?O#2Dd `b  c $A? ?3"`? 2|ƁSbh8Xe8X*{`!PƁSbh8Xe8#(+xڥo@=;M*PAU`BH0H =TDTM;B uf6.L ۭK 2 lz8Vgx"dLG 4%6i \{`!$P>i r wvxcdd`` @c112BYL%bpu*lo6xt_M\ 66=4Ĥ\Y\pd.P"CD(b@#3Xx EDd tb  c $A? ?3"`? 2  >bB( H= {`! >bB( H=L 0#xڥOARnq)hz0DhED9 GBĿDÁ3xA74 "&@̛4p0l3yͷogfg Gh8Rդt)_ytutCMy[|ltФ`8LV9A{f`vNaq>>ӾLRZSڷ־hv3vϷu-i5WU}d/V$T ]o3 c/υ|?nt_umDwԽ*;jyEW\rwW*xԳy<"1?+^q gȿ_#?MPZ'os!o|M.xRq@'[3kֻڜgȑ^Ho%a9ϐ#ȑ+^Ez>f9ϐ#=ȑ)f9ϐ#=ȑz=KM>{At~*q _'yH 8fXo[> quԙ-z_P 91,fC;|)ls.nyFBCM\AHMț`"|6iI9; m/P1Io!Hu+Xx)x$D@V{Be? +Dd Db  c $A? ?3"`?2=EΏKϊ)${`!=EΏKϊ)  &xڥS=,Q]r" ($rDP\ E%iTP^BBFWBJ(X-62ff潇0(7h)o~ֹS W1::@KLTܙ%Sۚv?AP8~{~# 45ۺYk5SQ}_kOyGS^7X&w3'>OuBOte(=cawt- 2:DbI0tAft&']+˝Dd ,b  c $A? ?3"`?264^sy'{`!64^s` .xcdd``~ @c112BYL%bpu.pNG/40y{yI)$5 d/P"CX8b@f~uDd lb   c $A ? ?3"`?2^[dxڥK@]_tn: RCēM[hOP(tpqsp讃CAQ0ޏ$h 7޻{CP{A-=i_e5Q3Lwu-VX,:A}}2I$sS5Ȭ 90xҳ#U zІF[fͱuز4O-dN$&I[m J531n/AKxr-(c t.^WG&*>h]zyno˾IN*_-ٮhZy OӏKެF5&˦PРk'v6d!!ԹOqm4%/18 DkTDwDd Xb  c $A? ?3"`?2K0Jw!+/{`!K0Jw!+v` .xڥ=KAgu/1řB"AX 4HBpA3!؉`eoZm$X &bs̳;; tLXQn:2x }'oM{IgbW1ܛ$",]sM1&l{U<@Pf6d ^~\x3M/#/#X}9KN.7!l;5nkTdMFZ"zCEk(1|:!ĹtVsw=X3?C-n3G//uXtˊa^ɣ~q2t@gbb\VcUAŖLASL7 Dw4 1[ڎ )i8a4!=KDd ,b  c $A? ?3"`?2Fd<ѹ1}q2{`!iFd<ѹ1}`hn 7xcdd``vdd``baV d,FYzP1n: B@?b  ㆪaM,,He`? 01d++&1Dl\ _y>si# 9l .0 c98b߁?u`\ 2!(wgF[32Op{9c3 +ssdd|"?L #lQsq%F&&\ s: @> 1,xDd b  c $A? ?3"`?25_Ip89y4{`! _Ip89y@`PxڥJ#AǫIlp="x%x/B*DTHOM rCSxAaEAY1 ;ԯ_Ӄ3n +EM![_:43]>'u0d7KSFSclLf+k "5$}@fn:<[5ƗUa|9hF!A]X徹bPqSR@A?*kbS<yr I&?y, =r?V ԙ&Tʱ`t(YG!0B D}^\Ǚ˻D'wz︾oAoy}b{˗4Ɗ&}Du.F$[s׭&Bσ_Ӥ_KS`vJF- O@\)OkDd Xb  c $A? ?3"`?2n3'mX7,cV7{`!n3'mX7,cV@ hxڥS;KP>9VR'-=򾻡OW)׭?_7ou?CMްЙЌ9h$a'?Dd b  c $A? ?3"`?2kIr쀫y:{`!kIr쀫 Phxcdd`` @c112BYL%bpu=fVJBrU6D@27 d&\ PsA,@sC2sSRspb.#Oy@&V\ ~* !8(8b3=^y&D0*Ѕ+ O`m+ sށ v0o8121)W2<ԡN/ #BDd Db  c $A? ?3"`?2?MT)l||2-`?- `!?MT)l||2-`V FxڥRKPg`]PAvBD !*ҵ"8޽$Hq /{B@;EI+*"I"D!yh'oCa^N=-Ll2d0 t%ljIAٮm; "" G t>?>.Zbe7qk>/iW^Ӵ~\o_T(f_U;GGf$Z.}F?帏YH&7P[ ʋqf|hwL z/)80h\ ! Dd DLb  c $A? ?3"`?2UBiXWyIT1uB{`!)BiXWyITn * xڥKhAlͦy56k-6,Bz-=ElAKAOɊOX{OEAEBEqfb؄eo3~@`>AH![BRpc!N8v 3(Y*Ч/p_>GG  _Z9LI1G!ۺCz|+'np&M:@Y-K.sx/k!`%!B4q kY+O+.㶐B_7.ͷ|[|8a2NY5~L)LJP@[&o5OK_zHcwk̑رf t=gRh._e͊Y#$@\ֿPDAEA~T{ *#k:] mAsf1V4{n4R(Pzvb~wO*uhMDd b  c $A? ?3"`?2e+idtVZ2xsF{`!ke+idtVZ2x (9xcdd`` @c112BYL%bpuU}'EtZ_aAdFUB $2ZZG 0Cq 8Ub ?  #  |=8zW.T~;~)vTUl͘!|b(&0`yIHax90L(Nₖ\ вQ.s+KRs^ePdk(/ rDd ( Tb  c $A? ?3"`?2ERtY-I{`!ERtY-@ 1XJ^xcdd``dd``baV d,FYzP1n:&&! KA?H1 9WqC0&dT20 `[YB2sSRs"6~.ObYt9P~ΔJ9 痳K2#~Fl> 0Ap~/ >F;Їۣ[/!XeBܤ\<τ7[=F\ ~/È*oWTrAS8M `pcdbR ,.IeC 4^1 3Xɩ0Dd @b  c $A? ?3"`?2DMnW@_ \eÎZ?L{`!DMnW@_ \eÎZz  xڝKP^%*HuD܅: 4BDB % A2;,_"(ߏA}w{9 u OFb F0 sѝ dX(1o)[2<Lc捘 #VLb ض{ hAݾO*3d𦙗.sN پ:MlN+kBo3X{-uP Iq@9/늫)R?}"}V}Xx [^̾ƹxdp)""/*8V:otFY @/tI/%{Rwٟu8%tMR˄[HHu{ m^X"\T) qODd H[b  c $A? ?3"`?2M8jw /5<)N{`!!8jw /5(3Jfj-(엟8_m׺2w<5-90|^&$5}\Hx=aJ\ͼͭA5k8i]Yˆ lR<ڵy <s57ރ{S,s|Ohn_z}UE\r zA.>t-dLY m&kT_ :l υU{Q5Qr0XI4@ E t݅&QZ:؝Nۤ*n Ex8.2!j+%vx ,F1c^YBxHp%ĠpAl:I[\6Nn7^IDx?[s8hb "Γ)?O4͝#$Iso6 n΍M*ph*W`!* d-hStrong5\Lo2L d-h Body text$`a$CJaJmH sH DoAD d-hBody text Char_HmH sH tH  !&+058<@DMZq <J     !&+058<@DMZq <?      !"#$%&'()n99J8w56{as@u3VAj 5^  ; U u ; U 7 e ! j  / G b DRp?v6Tq.Kh9*HtP \!z!!"r#$*%6& 'p')++,),G,,,,, -. /*/p///000101R1p11 44566T7777888m9n9o9r99999::A;;<J=;>>?d@]A{BCCD EEFG$HHHHHHHHHHHHHHHHHHHHHIIIII I I IIIIIII*I+IAIBIcIdIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII J JJ00000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0 0 0 0 00000000000000000000000000000000000000000000000000000000000000000 0 0 00000000000000000H0 09 09 09 09 09 09 09 09 09 0 9 0 9 0 9 0 9 0 9 09 09 09 09 09 09I00@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0056{s@u3VAj 5^  ; U u ; U 7 e ! j  / G b DRp?v6q.Kh*Ht \!z!!"r#$*%6& 'p')++,),G,,,,, -. /*/p///000101R1p11 44566T7777888n9999::A;;<J=;>>?d@]A{BCCD EEGHJ@0@0@0@0@0@0@0@0@0@000X0 0 @0@000\@0@0@0@0@0@0@0@0@000K00@0@0@0@000F@0@0@0@0@0@0@0@0@0@0@0@0@0@0000@0@0@0@0@0@0@0@0@0@0@0@0@000(00'@00B0@0@0@0@0@0@0@0@0@0@0@0@0@      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOTRSUVWXYZ[\]^_`abcdefghijklmnopqrstu0@0@0@ 0@ 0@ 0@ 0@ 0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@ 0@ 0@ 0@0@00c0p@0@0@0@0@0@00k0dl0k0a@0J@0@ 0:@ 0:@ 0:@ 0:@ 0:P@ 0:@ 0:@ 0:@ 0:@ 0 :@ 0 :@ 0 :@ 0 :@ 0 :@ 001K0f0@0 00H u "%&*,~1I9 =@uB^IzJMo/"*-.0134689:<=>@ABCEFGPQSUWj!'6BN=ʝ"+/257;?DHRTV!,ju ! 5 7 .07KMUik  &(/CEL`bi}+?A ]!q!s!++,*,>,@,,,,,,,,-- /!/#/q//////0001'1)1S1g1i16777)7+7GGGJCX::::::::::::::::::::::::::::::::X8 @ (  Pt }# # C"?t  c $X99?#" `}#  B\CDE F jJxF1_ g 7   >o|U4 );Ocv !!"##$%%&&'(())*++,,-..//011223445567~7z8w8t9q:o:m;j<i<g=f=e>d?c@cAcBdCeCfDhEiEkFlFnGpHrHtIvIxJ{K}KLLMNNOOPQQRRSTTUVVWWXYZZ[\]^_``abcdefghhijklmnnoppqrsttuvvwwxyyzz{||}}~      !"#$$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-.//0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[[\[\@" P#   <" &  \B  3 "  <"SN \B  3 "   < "kf \B   3 "   < "}x \B   3 "   < " \B  3 "01  <" \B  3 "H#I#  <""#   <" V " \B  3 " 1H#2  < "    \B  3 " H#  < "    \B  3 " H#  < "  K  VB  # " TH#T  < "=   \B  3 " H#   < " @ &   \B  3 "  H#   <"  \B  3 " v H#w    < "   \B ! 3 " H#\ " 3 " H#\2 # 3 " g  \2 $ 3 "  P \2 % 3 " a \2 & 3 " ^ \2 ' 3 " d \2 ( 3 "  \2 ) 3 "]\2 * 3 "\2 + 3 " V\2 , 3 "\2 - 3 "O\2 . 3 "\2 / 3 "H\2 0 3 "|}\2 1 3 "}L\2 2 3 "}\2 3 3 "}E\2 4 3 "ys\2 5 3 "s>\2 6 3 "rs\2 7 3 "s7\2 8 3 "ks\2 9 3 "s0\2 : 3 "ds\2 ; 3 "s3\2 < 3 "gs\2 = 3 "s,\2 > 3 "`s\2 ? 3 "s&\2 @ 3 "Ys\2 A 3 "s\2 B 3 "Ss\2 C 3 "s\2 D 3 "Ls\2 E 3 "h\2 F 3 "Oh\2 G 3 "h\2 H 3 "Hh\2 I 3 "h \2 J 3 "Ah\2 K 3 "h\2 L 3 ":h\2 M 3 "h\2 N 3 "3 h| \2 O 3 " h!\2 P 3 "7!h!\2 Q 3 "!h!\2 R 3 "0"hx"\2 S 3 ""h"\2 T 3 ")#hr# U BZCZDEF-Z--Z-- @`"> | *  V BZCZDEF-Z--Z-- @`"   W BZCZDEF-Z--Z-- @`"u  [ X BZCZDEF-Z--Z-- @`" Z  Y BZCZDEF-Z--Z-- @`" z  Z BZCZDEF-Z--Z-- @`"SW [ BZCZDEF-Z--Z-- @`"-. \ BZCZDEF-Z--Z-- @`"?} ] BZCZDEF-Z--Z-- @`"& d  ^ BZCZDEF-Z--Z-- @`"   _ BZCZDEF-Z--Z-- @`"]   ` BZCZDEF-Z--Z-- @`" A a BZCZDEF-Z--Z-- @`" 5 b BZCZDEF-Z--Z-- @`": y^ c BZCZDEF-Z--Z-- @`"5s d BZCZDEF-Z--Z-- @`"rT e BZCZDEF-Z--Z-- @`" hL f BZCZDEF-Z--Z-- @`"s g BZCZDEF-Z--Z-- @`"E} h BZCZDEF-Z--Z-- @`") i BZCZDEF-Z--Z-- @`" j BZCZDEF-Z--Z-- @`""` k BZCZDEF-Z--Z-- @`" l BZCZDEF-Z--Z-- @`"Y m BZCZDEF-Z--Z-- @`"3 n BZCZDEF-Z--Z-- @`" o BZCZDEF-Z--Z-- @`",k p BZCZDEF-Z--Z-- @`" q BZCZDEF-Z--Z-- @`"n r BZCZDEF-Z--Z-- @`" H s BZCZDEF-Z--Z-- @`" t BZCZDEF-Z--Z-- @`"A} u BZCZDEF-Z--Z-- @`"} v BZCZDEF-Z--Z-- @`"x} w BZCZDEF-Z--Z-- @`" sR  x BZCZDEF-Z--Z-- @`" s  y BZCZDEF-Z--Z-- @`"V!s! z BZCZDEF-Z--Z-- @`"!h0" { BZCZDEF-Z--Z-- @`""h" | BZCZDEF-Z--Z-- @`")#^g#b } C " b ~ C " M b  C " b  C "b  C "[b  C "vb  C "|b  C " b  C "yF  b  C "r  b  C "k  b  C "dl  b  C "gW  b  C "`B  b  C "Y8 v b  C "S8 v b  C "LB  b  C "OB  b  C "HM  b  C "AM  b  C ":W x b  C "3 b r b  C "7!l u! b  C "0"v n" b  C ")# g# t  *B\CbDE F jJ+"   ( 1 : C K R Y ]`bb`\WQJC;2*#   !!"#$%% & &'()*+,-..//01234567889::;<<==> ? ? @ @ABBCCDEEFFGH H"I#I%J'K(K*L,L-M/N1N2O4O6P7Q9Q:R<R=S?T@TBUCVEVFWGWIXJYKYLZMZO[P\Q\R]S]T^U_U_V`W`XaYbYbZc[d\e]f^g^h_i`j`k`kalamanaobpbqbrbsbtauavawax`y`z`z_{_|_|^}^~^]\\[ZZYXXWWVVUTSSRRQQPONMLKKJJIIHGGFFEDDCCBAA@@??>=<<;;::987766554322110//.-,,++**))(((''&&&%%$$##""!!                   !"#$%&'()*+,-./01123456789:;<=>?@ABCDEFGHIJKKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\st@" W H#P  <"    <#" ?i Q  \2  # #" ?<.~\2  # #" ?]<~\2  # #" ?<~\B  # jJ#"  ?XY  t@ABRCREF)R))R))@`#" ?U5  t@ABRCREF)R))R))@`#" ?nU  t@ABRCREF)R))R))@`#" ?UbB  3 jJ#" ?qrb  3 #"  ?o9b  3 #" $?rob  3 #" (?obB  3 jJ#" ,?  6#" 0?P N   6#" 8?|"Y   6#" <?7#Z ,  B\C-DE F jJpp        !!"##$%%&&'(( )!*"+#,$-%.%.&/&/'0'1'1(2(3)4)5*6*7*8+9+:+;,<,=,>,?,@,A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y-Z-[-\-]-^-_-`-a-b-c-d-e-e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z,{,|,},~+++++++++++++++++++++++++++++++++***********************************************************))))))))))))))))))))))))))))))))))))))))))))))))) ) ) ) ) ))))))))))))))))))) )!)")#)$)%)&)')()))*)+),)-).)/)0)1)2)3)4)5)6)7)8)9):);)<)=)>)?)@)A)B)C)D)E)F)G)H)I)J)K)L)M)N)O)P)Q)R)S)T)U)V)W)X)Y)Z)[)\)])^)_)`)a)b)c)d)e)f)g)h)i)j)k)l)m)n)o)p)q)r)s)t)u)v)w)x)y)z){)|)})~)))))))))))))))))))))))))))))))))))((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( ( ( ( ( ((((((((((((((((((( (!("(#($(%(&('((()(*(+(,(-(.(/(0(1(2(3(4(5(6(7(8(9(:(;(<(=(>(?(@(A(B(C(D(E(F(G(H(I(J(K(L(M(N(O(P(Q(R(S(T(U(V(W(X(Y(Z([(\(@" H#@t }$#( # C"?t  c $X99?#" `}$#(  <" ' ' \B  3 "&  <" '' \B  3 "&  <"; '6' \B  3 "&  <"_ 'Z' \B  3 "&  <" '' \B  3 "))&  <" '' \B  3 "M#M#&  <"" '#'   <"{&c G( \B  3 " %M#%  <"\ ,%g & \B  3 " J$M#K$  <"b #m % \B  3 " "M#"  < "b "m Q$  \B  3 " !M#!  <!"\ 6!g # !VB  # " [ M#[   <"" f  "\B  3 " M#   <#"  | #\B  3 " M#  <$" Fm , $\B  3 " kM#l  <%" m  %\B  3 " M#  <&" m  &\B  3 " M#  <'"6 cc I '\  3 " M#&\2  3 " ( R\2  3 "]  \2  3 " $ B!\2  3 "Y   \2  3 " + \2  3 "_  T\2  3 " v!&!\2  3 "[""\2  3 """"\2  3 "W"g"\2  3 "!!\2  3 "R!a!\2 8THE BEHAVIOUR OF THE LSPSM IN ASYNCHRONOUS OPERATION Drago Ban Normal.dot Drago Ban1Microsoft Office Word@F#@؆@J; =՜.+,D՜.+,h$ hp   FER-ZESA%H' 5THE BEHAVIOUR OF THE LSPSM IN ASYNCHRONOUS OPERATION Title| 8@ _PID_HLINKSA4 kzfKhttp://www.ingentaconnect.com/content/tandf;jsessionid=2g5498ngj3hod.alicexmailto:drago.ban@fer.hr  FMicrosoft Office Word Document MSWordDocWord.Document.89q 3 "  \2  3 "Ne  \2  3 "& p \2  3 "U; \2  3 " \2  3 "P\2  3 "\2  3 "Lt\2  3 "_\2  3 "HT\2  3 "J\2  3 "D?\2  3 "5~\2  3 "J*t\2  3 "*t\2  3 "F i\2  3 "  i\2  3 "B i\2  3 "  i\2  3 "> i\2  3 " i\2  3 ": i\2  3 "  i\2  3 "@ i\2  3 " i\2  3 "< i\2  3 " i\2  3 "7 i\2  3 " i\2  3 "3 }i\2  3 " i\2  3 "/ y i\2  3 " !i\2  3 "5!*!t\2  3 "!*!t\2  3 "1"*{"t\2  3 ""*"t\2  3 "-#*w#t  ZB\CDE F jJvG  "Gr b L B H[{  |W9"#2BSds !!"##$%%&&'(())*++,,-..//01122344556778}8{9z:x:w;v<u=u>u?u?v@w@xAyB{B}CCDEEFFGHHIIJKKLLMNNOOPQQRRSTTUVVWWXYYZZ[\\]]^_`abbcdefghijkklmnoppqqrssttuvvwxyzz{||}~      !"#$$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\@" $M#$  <("'f( (  <)#" ?}pR " )\2  # #" ?U&=&\2  # #" ?lU&&\2  # #" ?U&"&\B  # jJ#"  ?q&r&  6*#" ?%/#g& *  <"? B S  ?o9p9r9JY 4}itAZ (4d#ve#pf#&g#4h#!i#L j#|k#4pl#m#gn#8o#Up#pq#r#ԓs#<t#Lu#v#w#x#y#pz#p{#p#iiqc:c:Q<Q<Z<>>!>>>>x@QFQF]FmFHHJ     "-oxxj:j:X<`<`<>$>$>>>>z@[FkFpFpFHHJ  >*urn:schemas-microsoft-com:office:smarttags PersonNameB*urn:schemas-microsoft-com:office:smarttagscountry-region8*urn:schemas-microsoft-com:office:smarttagsCity9*urn:schemas-microsoft-com:office:smarttagsplace=*urn:schemas-microsoft-com:office:smarttags PlaceType=*urn:schemas-microsoft-com:office:smarttags PlaceName9*urn:schemas-microsoft-com:office:smarttagsState BHSXpuQ_zJO{35]HJ9?VXjl 58^a   U X % . = F k t ; @ 9FFJ3333333333333333333333333333333333333]!z!9: >;>,@d@BCCCVDDD E}EEJHJY58DB8EaU?Hhe^`B*OJQJo(phhHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHs^`s56CJOJQJo(hH[]0^`0o(. $ $ ^$ `o(. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`OJQJo(hH^`OJQJ^Jo(hHopp^p`OJQJo(hH@ @ ^@ `OJQJo(hH^`OJQJ^Jo(hHo^`OJQJo(hH^`OJQJo(hH^`OJQJ^Jo(hHoPP^P`OJQJo(hHB8U?Y5Xf        Zadr@F      d        d-hYn J@HH!HH -.4567?JPP@PP @PP(@PPP8@P(PX@P>P@PFP@PJP@P(@Unknown Gz Times New Roman5Symbol3& z Arial]  MS MinchoArial Unicode MS5: GreekC; Batang;SimSun[SO?5 z Courier New;Wingdings"1`&a& =% =%!n4HH2qHP)?d-h24THE BEHAVIOUR OF THE LSPSM IN ASYNCHRONOUS OPERATION Drago Ban Drago Ban