Pregled bibliografske jedinice broj: 481735
Conics and Osculating Circles in Hyperbolic Plane
Conics and Osculating Circles in Hyperbolic Plane // Abstracts, 2nd Croatian Conference on Geometry and Graphics / Došlić, T. ; Šimić, M. (ur.).
Zagreb: Hrvatsko društvo za geometriju i grafiku, 2010. str. 18-18 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 481735 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Conics and Osculating Circles in Hyperbolic Plane
Autori
Halas, Helena
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstracts, 2nd Croatian Conference on Geometry and Graphics
/ Došlić, T. ; Šimić, M. - Zagreb : Hrvatsko društvo za geometriju i grafiku, 2010, 18-18
Skup
2nd Croatian Conference on Geometry and Graphics
Mjesto i datum
Šibenik, Hrvatska, 05.09.2010. - 09.09.2010
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
Cayley-Klein plane; Hyperbolic plane; perspective collineation; elation; osculating circle; curvature
Sažetak
The Cayley-Klein model is suitable for representing hyperbolic plane for creating geometric constructions, because the projective-geometric point of view in this model for Euclidean and hyperbolic plane are the same. Thus we show the classification of conics in Cayley-Klein model of hyperbolic plane, which can be constructed with perspective collineation as a collineary related image to the absolute conic. It is shown how to "translate" an Euclidean construction of an osculating circle in an arbitrary point of a conic which is given by a general data into Hyperbolic plane
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Helena Koncul
(autor)