Pregled bibliografske jedinice broj: 481397
Application of PLS and LS-SVM in Difficult-to- Measure Process Variable Estimation
Application of PLS and LS-SVM in Difficult-to- Measure Process Variable Estimation // Proceedings of 8th IEEE International Symposium on Intelligent Systems and Informatics (SISY 2010) / Aniko Szakal (ur.).
Subotica: Obuda University, 2010. str. 313-318 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 481397 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of PLS and LS-SVM in Difficult-to- Measure Process Variable Estimation
Autori
Grbić, Ratko ; Slišković, Dražen ; Nyarko, Emmanuel Karlo
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of 8th IEEE International Symposium on Intelligent Systems and Informatics (SISY 2010)
/ Aniko Szakal - Subotica : Obuda University, 2010, 313-318
ISBN
978-1-4244-7395-3
Skup
8th IEEE International Symposium on Intelligent Systems and Informatics (SISY 2010)
Mjesto i datum
Subotica, Srbija, 10.09.2010. - 11.09.2010
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
data based modeling; process variable estimation; PLS; LS-SVM
Sažetak
Very often important process variables which are concerned with the final product quality cannot be measured by a sensor or the measurements are too expensive and often not reliable. In order to enable continuous monitoring of process variables and efficient process control, soft-sensors are usually used to estimate these difficult-to- measure process variables. Soft-sensor is based upon mathematical model of the process. Process model building is based on plant data, taken from the process database. In this paper two methods, namely, Partial Least Squares (PLS) and Least Squares Support Vector Machines (LS-SVM), are used for difficult-to-measure process variables estimation. The methods are used for modeling simulated fluid storage process and oil distillation process. Results are compared and discussed. Advantages and disadvantages of each approach are outlined with respect to this specific application area. Additionally, we propose how these methods can be combined to exploit good properties of both methods.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek