Pregled bibliografske jedinice broj: 48011
Spatiotemporal neural network: A useful tool for modelling deep bed filtration process
Spatiotemporal neural network: A useful tool for modelling deep bed filtration process // Proceeding of the 2nd Europen Congress of Chemical Engineering / Charpentier, Jean-Claude (ur.).
Montpellier: Department of Chemical Engineerig CNRS, 1999. str. 1-8 (CD) (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 48011 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Spatiotemporal neural network: A useful tool for modelling deep bed filtration process
Autori
Osmak, Snježana ; Gosak, Darko ; Matijašić, Gordana ; Glasnović, Antun
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceeding of the 2nd Europen Congress of Chemical Engineering
/ Charpentier, Jean-Claude - Montpellier : Department of Chemical Engineerig CNRS, 1999, 1-8 (CD)
Skup
2nd Europen Congress of Chemical Engineering
Mjesto i datum
Montpellier, Francuska, 05.10.1999. - 07.10.1999
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
deep bed filtration; filter efficiency; neural network modelling; spatiotemporal neural network
Sažetak
Since the analytical models have failed in giving acceptable results for
entire deep bed filtration process, the statistical approach, using neural
network modelling, was introduced. In this case the hierarchically
connected set of dynamic recurrent networks is applied. Developed
method can be applied for simulation of the process as long as the
input concentration and distribution are in range of experimental
values.
Izvorni jezik
Engleski
Znanstvena područja
Kemijsko inženjerstvo
POVEZANOST RADA
Projekti:
125001
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Profili:
Snježana Osmak
(autor)
Antun Glasnović
(autor)
Darko Gosak
(autor)
Gordana Matijašić
(autor)