Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 479494

Fractal analysis of Hopf bifurcation for a class of completely integrable nonlinear Schroedinger Cauchy problems


Milišić, Josipa Pina; Žubrinić, Darko; Županović, Vesna
Fractal analysis of Hopf bifurcation for a class of completely integrable nonlinear Schroedinger Cauchy problems // Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE), 60 (2010), 1-32 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 479494 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fractal analysis of Hopf bifurcation for a class of completely integrable nonlinear Schroedinger Cauchy problems

Autori
Milišić, Josipa Pina ; Žubrinić, Darko ; Županović, Vesna

Izvornik
Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE) (1417-3875) 60 (2010); 1-32

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Schroedinger equation; Hopf bifurcation; box dimension; Minkowski content; compactness; rectifiability; bundle of trajectories; oscillation; multiple spiral; spiral chirp.

Sažetak
We study the complexity of solutions for a class of completely integrable, nonlinear integro-differential Schroedinger initial-boundary value problems on a bounded domain, depending on a real bifurcation parameter. The considered Schroedinger problem is a natural extension of the classical Hopf bifurcation model for planar systems into an infinite-dimensional phase space. Namely, the change in the sign of the bifurcation parameter has a consequence that an attracting (or repelling) invariant subset of the sphere in $L^2(\Omega)$ is born. We measure the complexity of trajectories near the origin by considering he Minkowski content and the box dimension of their finite-dimensional projections. Moreover we consider the compactness and rectifiability of trajectories, and box dimension of multiple pirals and spiral chirps. Finally, we are able to obtain the box dimension of trajectories of some nonintegrable Schroedinger evolution problems using their reformulation in terms of the corresponding (not explicitly solvable) dynamical systems in $\Rb^n$.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)
036-0361621-3012 - Napredne strategije upravljanja i estimacije u složenim sustavima (Perić, Nedjeljko, MZO ) ( CroRIS)
036-0363078-3018 - Upravljanje mobilnim robotima i vozilima u nepoznatim i dinamičkim okruženjima (Petrović, Ivan, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Citiraj ovu publikaciju:

Milišić, Josipa Pina; Žubrinić, Darko; Županović, Vesna
Fractal analysis of Hopf bifurcation for a class of completely integrable nonlinear Schroedinger Cauchy problems // Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE), 60 (2010), 1-32 (međunarodna recenzija, članak, znanstveni)
Milišić, J., Žubrinić, D. & Županović, V. (2010) Fractal analysis of Hopf bifurcation for a class of completely integrable nonlinear Schroedinger Cauchy problems. Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE), 60, 1-32.
@article{article, author = {Mili\v{s}i\'{c}, Josipa Pina and \v{Z}ubrini\'{c}, Darko and \v{Z}upanovi\'{c}, Vesna}, year = {2010}, pages = {1-32}, keywords = {Schroedinger equation, Hopf bifurcation, box dimension, Minkowski content, compactness, rectifiability, bundle of trajectories, oscillation, multiple spiral, spiral chirp.}, journal = {Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE)}, volume = {60}, issn = {1417-3875}, title = {Fractal analysis of Hopf bifurcation for a class of completely integrable nonlinear Schroedinger Cauchy problems}, keyword = {Schroedinger equation, Hopf bifurcation, box dimension, Minkowski content, compactness, rectifiability, bundle of trajectories, oscillation, multiple spiral, spiral chirp.} }
@article{article, author = {Mili\v{s}i\'{c}, Josipa Pina and \v{Z}ubrini\'{c}, Darko and \v{Z}upanovi\'{c}, Vesna}, year = {2010}, pages = {1-32}, keywords = {Schroedinger equation, Hopf bifurcation, box dimension, Minkowski content, compactness, rectifiability, bundle of trajectories, oscillation, multiple spiral, spiral chirp.}, journal = {Electronic Journal of Qualitative Theory of Differential Equations (EJQTDE)}, volume = {60}, issn = {1417-3875}, title = {Fractal analysis of Hopf bifurcation for a class of completely integrable nonlinear Schroedinger Cauchy problems}, keyword = {Schroedinger equation, Hopf bifurcation, box dimension, Minkowski content, compactness, rectifiability, bundle of trajectories, oscillation, multiple spiral, spiral chirp.} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font