Pregled bibliografske jedinice broj: 478004
Estimating and Fusing Quality Factors for Iris Biometric Images
Estimating and Fusing Quality Factors for Iris Biometric Images // IEEE transactions on systems, man and cybernetics. Part A. Systems and humans, 40 (2010), 3; 509-524 doi:10.1109/TSMCA.2010.2041658 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 478004 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Estimating and Fusing Quality Factors for Iris Biometric Images
Autori
Kalka, Nathan D. ; Jinyu, Zuo ; Schmid, Natalia A. ; Čukić, Bojan
Izvornik
IEEE transactions on systems, man and cybernetics. Part A. Systems and humans (1083-4427) 40
(2010), 3;
509-524
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Belief function; Dempster–Shafer (DS) theory; Iris image quality; Iris recognition; Quality metrics
Sažetak
Iris recognition, the ability to recognize and distinguish individuals by their iris pattern, is one of the most reliable biometrics in terms of recognition and identification performance. However, the performance of these systems is affected by poorquality imaging. In this paper, we extend iris quality assessment research by analyzing the effect of various quality factors such as defocus blur, off-angle, occlusion/specular reflection, lighting, and iris resolution on the performance of a traditional iris recognition system. We further design a fully automated iris image quality evaluation block that estimates defocus blur, motion blur, offangle, occlusion, lighting, specular reflection, and pixel counts. First, each factor is estimated individually, and then, the second step fuses the estimated factors by using a Dempster–Shafer theory approach to evidential reasoning. The designed block is evaluated on three data sets: Institute of Automation, Chinese Academy of Sciences (CASIA) 3.0 interval subset, West Virginia University (WVU) non-ideal iris, and Iris Challenge Evaluation (ICE)1.0 dataset made available by National Institute for Standards and Technology (NIST). Considerable improvement in recognition performance is demonstrated when removing poor-quality images selected by our quality metric. The upper bound on computational complexity required to evaluate the quality of a single image is O(n2 log n).
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
165-0362980-2002 - Postupci raspoređivanja u samoodrživim raspodijeljenim računalnim sustavima (Martinović, Goran, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Profili:
Bojan Čukić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Compendex (EI Village)
- Compu-Math Citation Index
- Computer and Information Systems Abstracts
- INSPEC
- MathSciNet
- Scopus