Pregled bibliografske jedinice broj: 47594
NAPREDNO UPRAVLJANJE BIOPROCESIMA POMOĆU ALGORITAMA UMJETNE INTELIGENCIJE: PRIMJENA U UZGOJU KVASCA Saccharomyces cerevisiae
NAPREDNO UPRAVLJANJE BIOPROCESIMA POMOĆU ALGORITAMA UMJETNE INTELIGENCIJE: PRIMJENA U UZGOJU KVASCA Saccharomyces cerevisiae, 2000., doktorska disertacija, Prehrambeno-biotehnološki fakultet, Zagreb
CROSBI ID: 47594 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
NAPREDNO UPRAVLJANJE BIOPROCESIMA POMOĆU ALGORITAMA UMJETNE INTELIGENCIJE: PRIMJENA U UZGOJU KVASCA Saccharomyces cerevisiae
(Advanced bioprocess control by artificial intelligence algorithms: application in cultivation of yeast Saccharomyces cerevisiae)
Autori
Beluhan, Damir
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Prehrambeno-biotehnološki fakultet
Mjesto
Zagreb
Datum
18.05
Godina
2000
Stranica
114
Mentor
Kurtanjek, Želimir
Neposredni voditelj
Kurtanjek, Želimir
Ključne riječi
umjetne neuralne mreže; neizrazita logika; ekspertni sustav; hibridno modeliranje; procesno upravljanje; procjena biomase; Saccharomyces cerevisiae
(artificial neural network; fuzzy logic; expert system; hybrid modeling; process control; biomass estimation; Saccharomyces cerevisiae)
Sažetak
Uspješna identifikacija sustava mikrobnog uzgoja kvasca Saccharomyces cerevisiae pomoću Jordan-Elmanovih umjetnih neuralnih mreža (ANN), nekih drugih lokalno rekurentnih (TLRN), kao i ANN s vremenskim kašnjenjima (TDNN), omogućila je procjenu i predviđanje ključnih varijabli stanja, te eksperimentalnu primjenu izravnog inverznog upravljanja, i upravljanja bioprocesom internim modelom. Realizirana alternativa je i neizraziti PD (proporcionalno-derivativni) regulator varijabli stanja, respiracijskog kvocijenta ili koncentracije etanola.
Industrijski šaržni uzgoj kvasca s pritokom supstrata se može razdvojiti u četiri različite metaboličke faze (faza privikavanja, faze limitirane izvorom ugljika ili dobavom kisika, te faza stabilizacije) pomoću neuro-neizrazitog ekspertnog modela. Primjenjena su četiri lingvistička pravila za dvije varijable stanja (brzina potrošnje kisika i volumen kapljevine), a funkcije pripadnosti su se automatski prilagodile nadgledanim algoritmom učenja, inicijaliziranim a priori znanjem operatera. Uočavanje i odjeljivanje procesnih faza olakšava i čini vjerodostojnijom provedenu procjenu koncentracije biomase pomoću zasebnih ANN kombiniranih s materijalnom bilancom rasta. Upotrijebljene su statičke ANN s lokalnim rekurentnim memorijskim strukturama, a ulazne varijable su respiracijski kvocijent, brzina pritoka melase, koncentracija etanola ili slične uobičajene on-line mjerene veličine. Ovaj hibridni pristup je općenito primjenjiv u procjeni i predviđanju stanja, kada je potrebno integrirati različite procesne informacije i saznanja.
Za procjenu ili izračun trenutačne brzine pritoka melase, FEED(t), upotrijebljeno je izravno inverzno učenje ulaznih na temelju izlaznih vrijednosti varijabli stanja sustava, kao i interna modelna upravljačka ANN struktura, trenirana tzv. off-line uopćenim pristupom. Ovo preslikavanje je temeljeno na mjerenjima, s periodom uzorkovanja od 1 minute, željene vrijednosti respiracijskog kvocijenta, RQ(t+1), prošlih brzina pritoka melase, te trenutačnih i prošlih vrijednosti brzine potrošnje kisika, brzine proizvodnje ugljičnog dioksida, koncentracije etanola i volumena. Budući da se iz uzorka moraju izvući informacije skrivene u vremenu, statičke ANN su proširene kratkotrajnim memorijskim strukturama (TDNN, TLRN). Ovi napredni algoritmi upravljanja su implementirani u komercijalni mikroprocesorski upravljački sustav (Simatic M7-400) laboratorijskog bioreaktora.
Izvorni jezik
Hrvatski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prehrambeno-biotehnološki fakultet, Zagreb