Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 474210

Student Dropout Analysis with Application of Data Mining Methods


Jadrić, Mario; Garača, Željko; Ćukušić, Maja
Student Dropout Analysis with Application of Data Mining Methods // Management : journal of contemporary management issues, 15 (2010), 1; 31-46 (podatak o recenziji nije dostupan, prethodno priopćenje, znanstveni)


CROSBI ID: 474210 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Student Dropout Analysis with Application of Data Mining Methods

Autori
Jadrić, Mario ; Garača, Željko ; Ćukušić, Maja

Izvornik
Management : journal of contemporary management issues (1331-0194) 15 (2010), 1; 31-46

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, prethodno priopćenje, znanstveni

Ključne riječi
higher education; dropout analysis; data mining; SEMMA methodology

Sažetak
One of the indicators of potential problems in the higher education system may be a large number of student dropouts in the junior years. An analysis of the existing transaction data provides the information on students that will allow the definition of the key processes that have to be adapted in order to enhance the efficiency of studying. To understand better the problem of dropouts, the data are processed by the application of data mining methods: logistic regression, decision trees and neural networks. The models are built according to the SEMMA methodology and then compared to select the one which best predicts the student dropout. This paper concentrates primarily to the application of the data mining method in area of higher education, in which such methods have not been applied yet. In addition, a model, useful for strategic planning of additional mechanisms to improve the efficiency of studying, is also suggested.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
016-0000000-1746 - Komunikacijske vještine i tehnologije u komunikaciji Internetom i e-obrazovanju (Bubaš, Goran, MZOS ) ( CroRIS)

Ustanove:
Ekonomski fakultet, Split

Profili:

Avatar Url Mario Jadrić (autor)

Avatar Url Željko Garača (autor)

Avatar Url Maja Ćukušić (autor)

Citiraj ovu publikaciju:

Jadrić, Mario; Garača, Željko; Ćukušić, Maja
Student Dropout Analysis with Application of Data Mining Methods // Management : journal of contemporary management issues, 15 (2010), 1; 31-46 (podatak o recenziji nije dostupan, prethodno priopćenje, znanstveni)
Jadrić, M., Garača, Ž. & Ćukušić, M. (2010) Student Dropout Analysis with Application of Data Mining Methods. Management : journal of contemporary management issues, 15 (1), 31-46.
@article{article, author = {Jadri\'{c}, Mario and Gara\v{c}a, \v{Z}eljko and \'{C}uku\v{s}i\'{c}, Maja}, year = {2010}, pages = {31-46}, keywords = {higher education, dropout analysis, data mining, SEMMA methodology}, journal = {Management : journal of contemporary management issues}, volume = {15}, number = {1}, issn = {1331-0194}, title = {Student Dropout Analysis with Application of Data Mining Methods}, keyword = {higher education, dropout analysis, data mining, SEMMA methodology} }
@article{article, author = {Jadri\'{c}, Mario and Gara\v{c}a, \v{Z}eljko and \'{C}uku\v{s}i\'{c}, Maja}, year = {2010}, pages = {31-46}, keywords = {higher education, dropout analysis, data mining, SEMMA methodology}, journal = {Management : journal of contemporary management issues}, volume = {15}, number = {1}, issn = {1331-0194}, title = {Student Dropout Analysis with Application of Data Mining Methods}, keyword = {higher education, dropout analysis, data mining, SEMMA methodology} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus
  • EconLit


Uključenost u ostale bibliografske baze podataka::


  • EconLit





Contrast
Increase Font
Decrease Font
Dyslexic Font