Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 470184

Kochen-Specker Sets and Generalized Orthoarguesian Equations


Megill, Norman D.; Pavičić, Mladen
Kochen-Specker Sets and Generalized Orthoarguesian Equations // Annales henri poincare, 12 (2011), 7; 1417-1429 doi:10.1007/s00023-011-0109-0 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 470184 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Kochen-Specker Sets and Generalized Orthoarguesian Equations

Autori
Megill, Norman D. ; Pavičić, Mladen

Izvornik
Annales henri poincare (1424-0637) 12 (2011), 7; 1417-1429

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Hilbert space; Hilbert lattice; generalized orthoarguesian equations; Kochen-Specker sets

Sažetak
Every set (finite or infinite) of quantum vectors (states) satisfies generalized orthoarguesian equations ($n$OA). We consider two 3-dim Kochen-Specker (KS) sets of vectors and show how each of them should be represented by means of a Hasse diagram--- a lattice, an algebra of subspaces of a Hilbert space--that contains rays and planes determined by the vectors so as to satisfy $n$OA. That also shows why they cannot be represented by a special kind of Hasse diagram called a Greechie diagram, as has been erroneously done in the literature. One of the KS sets (Peres') is an example of a lattice in which 6OA pass and 7OA fails, and that closes an open question of whether the 7oa class of lattices properly contains the 6oa class. This result is important because it provides additional evidence that our previously given proof of noa =< (n+1)oa can be extended to proper inclusion noa < (n+1)oa and that nOA form an infinite sequence of successively stronger equations.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Projekti:
082-0982562-3160 - Kvantno računanje: paralelnost i vizualizacija (Pavičić, Mladen, MZOS ) ( CroRIS)

Ustanove:
Građevinski fakultet, Zagreb

Profili:

Avatar Url Mladen Pavičić (autor)

Citiraj ovu publikaciju:

Megill, Norman D.; Pavičić, Mladen
Kochen-Specker Sets and Generalized Orthoarguesian Equations // Annales henri poincare, 12 (2011), 7; 1417-1429 doi:10.1007/s00023-011-0109-0 (međunarodna recenzija, članak, znanstveni)
Megill, N. & Pavičić, M. (2011) Kochen-Specker Sets and Generalized Orthoarguesian Equations. Annales henri poincare, 12 (7), 1417-1429 doi:10.1007/s00023-011-0109-0.
@article{article, author = {Megill, Norman D. and Pavi\v{c}i\'{c}, Mladen}, year = {2011}, pages = {1417-1429}, DOI = {10.1007/s00023-011-0109-0}, keywords = {Hilbert space, Hilbert lattice, generalized orthoarguesian equations, Kochen-Specker sets}, journal = {Annales henri poincare}, doi = {10.1007/s00023-011-0109-0}, volume = {12}, number = {7}, issn = {1424-0637}, title = {Kochen-Specker Sets and Generalized Orthoarguesian Equations}, keyword = {Hilbert space, Hilbert lattice, generalized orthoarguesian equations, Kochen-Specker sets} }
@article{article, author = {Megill, Norman D. and Pavi\v{c}i\'{c}, Mladen}, year = {2011}, pages = {1417-1429}, DOI = {10.1007/s00023-011-0109-0}, keywords = {Hilbert space, Hilbert lattice, generalized orthoarguesian equations, Kochen-Specker sets}, journal = {Annales henri poincare}, doi = {10.1007/s00023-011-0109-0}, volume = {12}, number = {7}, issn = {1424-0637}, title = {Kochen-Specker Sets and Generalized Orthoarguesian Equations}, keyword = {Hilbert space, Hilbert lattice, generalized orthoarguesian equations, Kochen-Specker sets} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • INSPEC
  • Academic OneFile
  • Current Abstracts
  • Chemical and Earth Sciences
  • Digital Mathematics Registry
  • EBSCO
  • Gale
  • Google Scholar
  • Journal Citation Reports/Science Edition
  • Mathematical Reviews
  • OCLC
  • PASCAL
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • SPIRES
  • Summon by Serial Solutions
  • VINITI - Russian Academy of Science
  • Zentralblat


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font