Pregled bibliografske jedinice broj: 46936
Approximate eigenvectors as preconditioner
Approximate eigenvectors as preconditioner // Linear Algebra and Its Applications, 309 (2000), 191-215 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 46936 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Approximate eigenvectors as preconditioner
Autori
Drmač, Zlatko ; Veselić, Krešimir
Izvornik
Linear Algebra and Its Applications (0024-3795) 309
(2000);
191-215
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Eigenvectors; eigenvalues; preconditioners
Sažetak
Given approximate eigenvector matrix of a
Hermitian nonsingular matrix H, the spectral
decomposition of H can be obtained by computing H´=*H and then diagonalizing H´. This
work addresses the issue of numerical stability of the transition from H to H´ in finite
precision arithmetic. Our analysis shows that the
eigenvalues will be computed with small
relative error if (i) the approximate
eigenvectors are sufficiently orthonormal and (ii)
the matrix ||||H´||||= is of the form DAD with
diagonal D and well-conditioned A. In that
case, H´ can be efficiently and accurately diagonalized by the Jacobi method. If is
computed by fast eigensolver based on tridiagonalization, this procedure usually gives
the eigensolution with high relative accuracy and it is more efficient than accurate
Jacobi type methods on their own.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037012
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Mathematical Reviews