Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 462368

Detection and Solving of Regression Modeling Problems in SPSS


Pivac, Snježana
Detection and Solving of Regression Modeling Problems in SPSS // Proceedings of the 33rd International Convention MIPRO 2010, Computers in Education (CE)
Opatija, Hrvatska, 2010. str. 158-163 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 462368 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Detection and Solving of Regression Modeling Problems in SPSS

Autori
Pivac, Snježana

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 33rd International Convention MIPRO 2010, Computers in Education (CE) / - , 2010, 158-163

ISBN
978-953-233-054-0

Skup
33rd International Convention MIPRO 2010, Computers in Education (CE)

Mjesto i datum
Opatija, Hrvatska, 24.05.2010. - 28.05.2010

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Regression Modeling; Autocorrelation of Residuals; Multicollinearity; Heteroscedasticity of Residuals; Normality Assumption

Sažetak
Regression modeling has been frequently used in numerous qualitative and quantitative economic analyses. During such type of analyses it is investigated how one or more independent variables explain the dependent one. After selection of relevant variables in accordance with economic theory and practice and estimation of regression model parameters with basic regression diagnostic, it is necessary to examine if the basic assumptions are fulfilled. Namely, even in a situation when the model calculation provides numeric results, there are regression problems causing incorrect regression image. Examples of such problems are autocorrelation of residuals, multicollinearity, heteroscedasticity of residuals variance and normality assumption. In those models the estimated parameters and the representative indicators could be false. The parameters estimation and all relevant testing and solving of the appropriate regression problems are performed and presented in SPSS on the concrete model analysis of economic variables. This approach can be useful for the students of the faculties of economics as part of their scientific and specialized analyses.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Projekti:
055-0000000-1435 - Matematički modeli u analizi razvoja hrvatskog financijskog tržišta (Aljinović, Zdravka, MZOS ) ( CroRIS)

Ustanove:
Ekonomski fakultet, Split

Profili:

Avatar Url Snježana Pivac (autor)


Citiraj ovu publikaciju:

Pivac, Snježana
Detection and Solving of Regression Modeling Problems in SPSS // Proceedings of the 33rd International Convention MIPRO 2010, Computers in Education (CE)
Opatija, Hrvatska, 2010. str. 158-163 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Pivac, S. (2010) Detection and Solving of Regression Modeling Problems in SPSS. U: Proceedings of the 33rd International Convention MIPRO 2010, Computers in Education (CE).
@article{article, author = {Pivac, Snje\v{z}ana}, year = {2010}, pages = {158-163}, keywords = {Regression Modeling, Autocorrelation of Residuals, Multicollinearity, Heteroscedasticity of Residuals, Normality Assumption}, isbn = {978-953-233-054-0}, title = {Detection and Solving of Regression Modeling Problems in SPSS}, keyword = {Regression Modeling, Autocorrelation of Residuals, Multicollinearity, Heteroscedasticity of Residuals, Normality Assumption}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Pivac, Snje\v{z}ana}, year = {2010}, pages = {158-163}, keywords = {Regression Modeling, Autocorrelation of Residuals, Multicollinearity, Heteroscedasticity of Residuals, Normality Assumption}, isbn = {978-953-233-054-0}, title = {Detection and Solving of Regression Modeling Problems in SPSS}, keyword = {Regression Modeling, Autocorrelation of Residuals, Multicollinearity, Heteroscedasticity of Residuals, Normality Assumption}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font