Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 461147

Simulation of aggregate wind farm short-term production variations


Goić, Ranko; Krstulović-Opara, Jakov; Jakus, Damir
Simulation of aggregate wind farm short-term production variations // Renewable energy, 35 (2010), 11; 2602-2609 doi:10.1016/j.renene.2010.04.005 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 461147 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Simulation of aggregate wind farm short-term production variations

Autori
Goić, Ranko ; Krstulović-Opara, Jakov ; Jakus, Damir

Izvornik
Renewable energy (0960-1481) 35 (2010), 11; 2602-2609

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
aggregate wind power generation; wind power variations; Monte Carlo simulation; Markov chain; stochastic dependency

Sažetak
The variability of wind power production poses the greatest challenge in the integration of large scale wind power in power systems. Furthermore, larger scale penetration implies a wider geographical spreading of installed wind power, resulting in reduced variability and the smoothing effect of total power generation. Therefore, analysis of the impact of wind power variations on power system operation requires adequate modeling of aggregate power output from geographically dispersed wind farms. This paper analyzes different aspects of Markov chain Monte Carlo simulation methods for the synthetic generation of dependent wind power time series. However, testing indicates that these approaches do not adequately model the stochastic dependence between wind power time series in conjunction with individual persistence which is necessary to obtain realistic distributions of aggregate power output and total power variations. Consequently, a novel approach based on a modified second order Markov chain Monte Carlo simulation is proposed. Simulation results show that this method obtains synthetic time series of aggregate wind power which very closely fit the original data, with respect to both the cumulative density function of total output power and the probability density function of power variations.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
023-0361590-1654 - Razvoj i pogon elektroenergetskog sustava s visokim udjelom vjetroelektrana (Goić, Ranko, MZOS ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url Ranko Goić (autor)

Avatar Url Damir Jakus (autor)

Avatar Url Jakov Krstulović Opara (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com www.sciencedirect.com

Citiraj ovu publikaciju:

Goić, Ranko; Krstulović-Opara, Jakov; Jakus, Damir
Simulation of aggregate wind farm short-term production variations // Renewable energy, 35 (2010), 11; 2602-2609 doi:10.1016/j.renene.2010.04.005 (međunarodna recenzija, članak, znanstveni)
Goić, R., Krstulović-Opara, J. & Jakus, D. (2010) Simulation of aggregate wind farm short-term production variations. Renewable energy, 35 (11), 2602-2609 doi:10.1016/j.renene.2010.04.005.
@article{article, author = {Goi\'{c}, Ranko and Krstulovi\'{c}-Opara, Jakov and Jakus, Damir}, year = {2010}, pages = {2602-2609}, DOI = {10.1016/j.renene.2010.04.005}, keywords = {aggregate wind power generation, wind power variations, Monte Carlo simulation, Markov chain, stochastic dependency}, journal = {Renewable energy}, doi = {10.1016/j.renene.2010.04.005}, volume = {35}, number = {11}, issn = {0960-1481}, title = {Simulation of aggregate wind farm short-term production variations}, keyword = {aggregate wind power generation, wind power variations, Monte Carlo simulation, Markov chain, stochastic dependency} }
@article{article, author = {Goi\'{c}, Ranko and Krstulovi\'{c}-Opara, Jakov and Jakus, Damir}, year = {2010}, pages = {2602-2609}, DOI = {10.1016/j.renene.2010.04.005}, keywords = {aggregate wind power generation, wind power variations, Monte Carlo simulation, Markov chain, stochastic dependency}, journal = {Renewable energy}, doi = {10.1016/j.renene.2010.04.005}, volume = {35}, number = {11}, issn = {0960-1481}, title = {Simulation of aggregate wind farm short-term production variations}, keyword = {aggregate wind power generation, wind power variations, Monte Carlo simulation, Markov chain, stochastic dependency} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font