Pregled bibliografske jedinice broj: 457040
Combinatorial bases of Feigin-Stoyanovsky's type subspaces of standard modules for $D_4^{;(1)};$
Combinatorial bases of Feigin-Stoyanovsky's type subspaces of standard modules for $D_4^{;(1)};$ // Geometric Representation Theory and Extended Affine Lie Algebras
Ottawa, Kanada, 2009. (poster, nije recenziran, neobjavljeni rad, ostalo)
CROSBI ID: 457040 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Combinatorial bases of Feigin-Stoyanovsky's type subspaces of standard modules for $D_4^{;(1)};$
Autori
Baranović, Ivana
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, ostalo
Skup
Geometric Representation Theory and Extended Affine Lie Algebras
Mjesto i datum
Ottawa, Kanada, 29.06.2009. - 03.07.2009
Vrsta sudjelovanja
Poster
Vrsta recenzije
Nije recenziran
Ključne riječi
combinatorial bases; affine Lie algebras
Sažetak
Let $\gtl$ be an affine Lie algebra of type $D_{;4};^{;(1)};$ and $L(\Lambda)$ its standard module with a highest weight vector $v_{;\Lambda};$. For a given $\Z$-gradation $\gtl = \gtl_{;-1}; + \gtl_0 + \gtl_1$, we define Feigin-Stoyanovsky's type subspace as $$W(\Lambda) = U(\gtl_1) \cdot v_{;\Lambda};.$$ Following the idea of G. Georgiev, we reduce the Ponicar\'{;e};-Brikhoff-Witt \\ spanning set of $W(\Lambda)$ to a basis and prove its linear independence by using Dong-Lepowsky intertwining operators.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Profili:
Ivana Baranović
(autor)