Pregled bibliografske jedinice broj: 453724
An analogue of modular BPZ-equation in logarithmic (super)conformal field theory
An analogue of modular BPZ-equation in logarithmic (super)conformal field theory // Contemporary mathematics - American Mathematical Society, 497 (2009), 1-17 doi:10.1090/conm/497 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 453724 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
An analogue of modular BPZ-equation in logarithmic (super)conformal field theory
Autori
Adamović, Dražen ; Milas, Antun
Izvornik
Contemporary mathematics - American Mathematical Society (0271-4132) 497
(2009);
1-17
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
vertex operator algebras ; triplet vertex algebras ; logarithmic conformal field theory ; modular differential equations
Sažetak
We prove a general result on the size of the largest $L(0)$-Jordan cell in the category of modules for any $C_2$-cofinite vertex algebra. Then we analyze certain null vector conditions for the triplet $\mathcal{; ; ; W}; ; ; (p)$ (and the supertriplet vertex algebra $\mathcal{; ; ; SW}; ; ; (m)$), allowing us to construct modular differential equations satisfied by its vacuum pseudotraces (i.e, {; ; ; generalized characters}; ; ; ). Consequently, the category of weak modules for $\mathcal{; ; ; W}; ; ; (p)$ (or $\mathcal{; ; ; SW}; ; ; (m)$) admits $L(0)$-Jordan cells of size at most two, while the vector space of generalized characters for $\mathcal{; ; ; W}; ; ; (p)$ and $\mathcal{; ; ; SW}; ; ; (m)$ is $(3p-1)$ and $(3m+1)$- dimensional, respectively. Closely related to our modular differential equations are certain "logarithmic" $q$-series identities for powers of the Dedekind $\eta$-function, obtained by using ideas from [M1]-[M4].
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Fizika
POVEZANOST RADA
Projekti:
MZOS-037-0372794-2806 - Algebre verteks-operatora i beskonačno dimenzionalne Liejeve algebre (Primc, Mirko, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts