Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 449939

Learning Bayesian networks from survival data using weighting censored instances


Štajduhar, Ivan; Dalbelo Bašić, Bojana
Learning Bayesian networks from survival data using weighting censored instances // Journal of biomedical informatics, 43 (2010), 4; 613-622 doi:10.1016/j.jbi.2010.03.005 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 449939 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Learning Bayesian networks from survival data using weighting censored instances

Autori
Štajduhar, Ivan ; Dalbelo Bašić, Bojana

Izvornik
Journal of biomedical informatics (1532-0464) 43 (2010), 4; 613-622

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Bayesian network; prognostic model; survival analysis; weighting censored instances; medical decision support

Sažetak
Different survival-data pre-processing procedures and adaptations of existing machine-learning techniques have been successfully applied to numerous fields in clinical medicine. Zupan et al. (2000) proposed handling censored survival data by assigning distributions of outcomes to shortly observed censored instances. In this paper, we applied their learning technique to two well-known procedures for learning Bayesian networks: a search-and-score hill-climbing algorithm and a constraint-based conditional independence algorithm. The method was thoroughly tested in a simulation study and on the publicly available clinical dataset GBSG2. We compared it to learning Bayesian networks by treating censored instances as event free and to Cox regression. The results on model performance suggest that the weighting approach performs best when dealing with intermediate censoring. There is no significant difference between the model structures learnt using either the weighting approach or by treating censored instances as event free, regardless of censoring.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
036-1300646-1986 - Otkrivanje znanja u tekstnim podacima (Dalbelo-Bašić, Bojana, MZO ) ( CroRIS)
069-0362214-1575 - Optimizacija i dizajn vremensko-frekvencijskih distribucija (Sučić, Viktor, MZOS ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Štajduhar (autor)

Avatar Url Bojana Dalbelo Bašić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com dx.doi.org

Citiraj ovu publikaciju:

Štajduhar, Ivan; Dalbelo Bašić, Bojana
Learning Bayesian networks from survival data using weighting censored instances // Journal of biomedical informatics, 43 (2010), 4; 613-622 doi:10.1016/j.jbi.2010.03.005 (međunarodna recenzija, članak, znanstveni)
Štajduhar, I. & Dalbelo Bašić, B. (2010) Learning Bayesian networks from survival data using weighting censored instances. Journal of biomedical informatics, 43 (4), 613-622 doi:10.1016/j.jbi.2010.03.005.
@article{article, author = {\v{S}tajduhar, Ivan and Dalbelo Ba\v{s}i\'{c}, Bojana}, year = {2010}, pages = {613-622}, DOI = {10.1016/j.jbi.2010.03.005}, keywords = {Bayesian network, prognostic model, survival analysis, weighting censored instances, medical decision support}, journal = {Journal of biomedical informatics}, doi = {10.1016/j.jbi.2010.03.005}, volume = {43}, number = {4}, issn = {1532-0464}, title = {Learning Bayesian networks from survival data using weighting censored instances}, keyword = {Bayesian network, prognostic model, survival analysis, weighting censored instances, medical decision support} }
@article{article, author = {\v{S}tajduhar, Ivan and Dalbelo Ba\v{s}i\'{c}, Bojana}, year = {2010}, pages = {613-622}, DOI = {10.1016/j.jbi.2010.03.005}, keywords = {Bayesian network, prognostic model, survival analysis, weighting censored instances, medical decision support}, journal = {Journal of biomedical informatics}, doi = {10.1016/j.jbi.2010.03.005}, volume = {43}, number = {4}, issn = {1532-0464}, title = {Learning Bayesian networks from survival data using weighting censored instances}, keyword = {Bayesian network, prognostic model, survival analysis, weighting censored instances, medical decision support} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font