Pregled bibliografske jedinice broj: 449119
Sharp Green Function Estimates for $\Delta + \Delta^{;;; ; ; \alpha/2};;; ; ; $ in $C^{;;; ; ; 1, 1};;; ; ; $ Open Sets and Their Applications
Sharp Green Function Estimates for $\Delta + \Delta^{;;; ; ; \alpha/2};;; ; ; $ in $C^{;;; ; ; 1, 1};;; ; ; $ Open Sets and Their Applications // Illinois journal of mathematics, 54 (2010), 3; 981-1024 doi:10.1215/ijm/1336049983 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 449119 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sharp Green Function Estimates for $\Delta + \Delta^{;;; ; ; \alpha/2};;; ; ; $ in $C^{;;; ; ; 1, 1};;; ; ; $ Open Sets and Their Applications
(Sharp Green function estimates for Δ+Δα/2 in C1,1 open sets and their applications)
Autori
Chen, Zhen-Qing ; Kim, Panki ; Song, Renming ; Vondraček, Zoran
Izvornik
Illinois journal of mathematics (0019-2082) 54
(2010), 3;
981-1024
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Green function estimates ; boundary Harnack principle ; harmonic functions ; fractional Laplacian ; symmetric $\alpha$-stable process ; Brownian motion ; perturbation
Sažetak
We consider a family of pseudo differential operators $\{; ; ; ; ; \Delta+ a^\alpha \Delta^{; ; ; ; ; \alpha/2}; ; ; ; ; ; \ a\in [0, 1]\}; ; ; ; ; $ on $\R^d$ that evolves continuously from $\Delta$ to $\Delta + \Delta^{; ; ; ; ; \alpha/2}; ; ; ; ; $, where $d\geq 1$ and $\alpha \in (0, 2)$. It gives rise to a family of L\'evy processes \{; ; ; ; ; $X^a, a\in [0, 1]\}; ; ; ; ; $, where $X^a$ is the sum of a Brownian motion and an independent symmetric $\alpha$-stable process with weight $a$. Using a recently obtained uniform boundary Harnack principle with explicit decay rate, we establish sharp bounds for the Green function of the process $X^a$ killed upon exiting a bounded $C^{; ; ; ; ; 1, 1}; ; ; ; ; $ open set $D\subset\R^d$. Our estimates are uniform in $a\in (0, 1]$ and taking $a\to 0$ recovers the Green function estimates for Brownian motion in $D$. As a consequence of the Green function estimates for $X^a$ in $D$, we identify both the Martin boundary and the minimal Martin boundary of $D$ with respect to $X^a$ with its Euclidean boundary. Finally, sharp Green function estimates are derived for certain L\'evy processes which can be obtained as perturbations of $X^a$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372790-2801 - Slučajni procesi sa skokovima (Vondraček, Zoran, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Zoran Vondraček
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts