Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 445450

Loss of regularity of weak solutions of p-Laplace equations for p \neq 2


Žubrinić, Darko
Loss of regularity of weak solutions of p-Laplace equations for p \neq 2 // Differential equations & applications (Zagreb), 2 (2010), 2; 217-226 (podatak o recenziji nije dostupan, članak, znanstveni)


CROSBI ID: 445450 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Loss of regularity of weak solutions of p-Laplace equations for p \neq 2

Autori
Žubrinić, Darko

Izvornik
Differential equations & applications (Zagreb) (1847-120X) 2 (2010), 2; 217-226

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
p-Laplacian; regularity; singularity; hypoellipticity

Sažetak
If $1<p<\infty$ and $p\ne2$ then the exponent $\gamma_c=p/|p-2|$ is critical for the pointwise loss of regularity of the $p$-Laplace equation $-\Delta_p u=F(x)$, $u\in W_0^{; ; 1, p}; ; (\Omega)$, where $\Omega$ is a bounded domain in $\mathbb{; ; R}; ; ^N$, and $F\in L^{; ; p'}; ; (\Omega)$. By this we mean the following: if $1<p<2$ and $N$ is large enough, and the right-hand side $F$ has a singularity of order $\gamma>\gamma_c$ at some point $a\in\Omega$, that is, $F(x)\simeq|x-a|^{; ; -\gamma}; ; $ in a neighbourhood of $a$, then at the same point the weak solution $u$ has singularity of order which is larger than $\gamma$. The value of $\gamma_c$ is optimal. For $p>2$ we have the loss of regularity in the sense that if $F(x)=C|x|^m$ with $m>0$, then $u(x)=u(0)+D|x|^{; ; \mu}; ; $ with $\mu<m$, provided $m>\gamma_c$. We show that the $p$-Laplace operator is not hypoelliptic for $p\in(1, \infty)\setminus\{; ; 1+1/n:n\in2\mathbb{; ; N}; ; -1\}; ; $.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)
036-0361621-3012 - Napredne strategije upravljanja i estimacije u složenim sustavima (Perić, Nedjeljko, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Darko Žubrinić (autor)


Citiraj ovu publikaciju:

Žubrinić, Darko
Loss of regularity of weak solutions of p-Laplace equations for p \neq 2 // Differential equations & applications (Zagreb), 2 (2010), 2; 217-226 (podatak o recenziji nije dostupan, članak, znanstveni)
Žubrinić, D. (2010) Loss of regularity of weak solutions of p-Laplace equations for p \neq 2. Differential equations & applications (Zagreb), 2 (2), 217-226.
@article{article, author = {\v{Z}ubrini\'{c}, Darko}, year = {2010}, pages = {217-226}, keywords = {p-Laplacian, regularity, singularity, hypoellipticity}, journal = {Differential equations and applications (Zagreb)}, volume = {2}, number = {2}, issn = {1847-120X}, title = {Loss of regularity of weak solutions of p-Laplace equations for p \neq 2}, keyword = {p-Laplacian, regularity, singularity, hypoellipticity} }
@article{article, author = {\v{Z}ubrini\'{c}, Darko}, year = {2010}, pages = {217-226}, keywords = {p-Laplacian, regularity, singularity, hypoellipticity}, journal = {Differential equations and applications (Zagreb)}, volume = {2}, number = {2}, issn = {1847-120X}, title = {Loss of regularity of weak solutions of p-Laplace equations for p \neq 2}, keyword = {p-Laplacian, regularity, singularity, hypoellipticity} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet





Contrast
Increase Font
Decrease Font
Dyslexic Font