Pregled bibliografske jedinice broj: 445450
Loss of regularity of weak solutions of p-Laplace equations for p \neq 2
Loss of regularity of weak solutions of p-Laplace equations for p \neq 2 // Differential equations & applications (Zagreb), 2 (2010), 2; 217-226 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 445450 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Loss of regularity of weak solutions of p-Laplace equations for p \neq 2
Autori
Žubrinić, Darko
Izvornik
Differential equations & applications (Zagreb) (1847-120X) 2
(2010), 2;
217-226
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
p-Laplacian; regularity; singularity; hypoellipticity
Sažetak
If $1<p<\infty$ and $p\ne2$ then the exponent $\gamma_c=p/|p-2|$ is critical for the pointwise loss of regularity of the $p$-Laplace equation $-\Delta_p u=F(x)$, $u\in W_0^{; ; 1, p}; ; (\Omega)$, where $\Omega$ is a bounded domain in $\mathbb{; ; R}; ; ^N$, and $F\in L^{; ; p'}; ; (\Omega)$. By this we mean the following: if $1<p<2$ and $N$ is large enough, and the right-hand side $F$ has a singularity of order $\gamma>\gamma_c$ at some point $a\in\Omega$, that is, $F(x)\simeq|x-a|^{; ; -\gamma}; ; $ in a neighbourhood of $a$, then at the same point the weak solution $u$ has singularity of order which is larger than $\gamma$. The value of $\gamma_c$ is optimal. For $p>2$ we have the loss of regularity in the sense that if $F(x)=C|x|^m$ with $m>0$, then $u(x)=u(0)+D|x|^{; ; \mu}; ; $ with $\mu<m$, provided $m>\gamma_c$. We show that the $p$-Laplace operator is not hypoelliptic for $p\in(1, \infty)\setminus\{; ; 1+1/n:n\in2\mathbb{; ; N}; ; -1\}; ; $.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)
036-0361621-3012 - Napredne strategije upravljanja i estimacije u složenim sustavima (Perić, Nedjeljko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Darko Žubrinić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
Uključenost u ostale bibliografske baze podataka::
- MathSciNet