Pregled bibliografske jedinice broj: 445180
On refining of inequalities for convex functions by the concept of superquadracity
On refining of inequalities for convex functions by the concept of superquadracity // International Congress on Mathematics MICOM 2009, Book of Abstracts / Dodunekov, Stefan ; Eraković, Vesna (ur.).
Skopje: Union of Mathematicans of Macedonia, 2009. str. 14-14 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 445180 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On refining of inequalities for convex functions by the concept of superquadracity
Autori
Banić, Senka
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
International Congress on Mathematics MICOM 2009, Book of Abstracts
/ Dodunekov, Stefan ; Eraković, Vesna - Skopje : Union of Mathematicans of Macedonia, 2009, 14-14
Skup
MASSEE International Congress on Mathematics MICOM 2009
Mjesto i datum
Ohrid, Sjeverna Makedonija, 16.09.2009. - 20.09.2009
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
convex functions; superquadratic functions; Jensen's inequality; Hölder's inequality; Slater's inequality; Hermite-Hadamard inequalities
Sažetak
In 2004 S. Abramovich, G. Jameson and G. Sinnamon introduced a new interesting class of functions: the class of superquadratic functions. We say that the function ϕ is superquadratic if for any x≥0 there exists C(x)∈R such that ϕ(y)≥ϕ(x)+C(x)(y-x)+ϕ(|y-x|), ∀y≥0. In 2007 S. Abramovich, S. Banić and M. Matić generalized this concept for the functions in several variables. The class of superquadratic functions is strongly related to the class of convex functions: it can be proved that any nonnegative superquadratic function is convex. Using some previously proved characterizations and properties of this new class we establish "superquadratic variants" of several well known inequalities for convex functions. The refinements of many important inequalities for convex functions easily follow as special cases when considered superquadratic functions are nonnegative.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
177-1170889-1287 - Konveksne funkcije i primjene (Matić, Marko, MZOS ) ( CroRIS)
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split,
Prirodoslovno-matematički fakultet, Split
Profili:
Senka Banić
(autor)