Pregled bibliografske jedinice broj: 440894
Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian
Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian // Glasnik matematički, 45 (2010), 1; 63-83 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 440894 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal nonabelian
Autori
Božikov, Zdravka ; Janko, Zvonimir
Izvornik
Glasnik matematički (0017-095X) 45
(2010), 1;
63-83
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
minimal nonabelian 2-groups; central products; metacyclic groups; Frattini subgroups; generators and relations
Sažetak
We shall determine the title groups G up to isomorphism. This solves the problem Nr.861 for p = 2 stated by Y. Berkovich in /2/. The resulting groups will be presented in terms of generators and relations. We begin with the case d(G) = 2 (Theorems 2.1, 2.2 and 2.3) and then we determine such groups for d(G) > 2 (Theorems 3.1, 3.2 and 3.3). In these theorems we shall also describe all important characteristic subgroups so that it will be clear that groups appearing in distinct theorems are non-isomorphic. Conversely, it is easy to check that all groups given in these theorems possess exactly one maximal subgroup which is neither abelian nor minimal nonabelian.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
083-0000000-3227 - PRIMJENA ALGEBRE U GEOMETRIJI 2
Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split
Profili:
Zdravka Božikov
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus