Pregled bibliografske jedinice broj: 440703
Harnack Inequalities for some Lévy Processes
Harnack Inequalities for some Lévy Processes, 2009., doktorska disertacija, Prirodoslovno-matematički fakultet-Matematički odjel, Zagreb
CROSBI ID: 440703 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Harnack Inequalities for some Lévy Processes
Autori
Mimica, Ante
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Prirodoslovno-matematički fakultet-Matematički odjel
Mjesto
Zagreb
Datum
15.12
Godina
2009
Stranica
115
Mentor
Vondraček, Zoran
Ključne riječi
Harnack inequality ; random walk ; Green function ; Poisson kernel ; stable process ; harmonic function ; subordinator ; subordinate Brownian motion ; logarithmic Sobolev inequality
(Harnack Inequalities for some Lévy Processes)
Sažetak
Harnack inequality for nonnegative functions which are harmonic with respect to random walks in $\R^d$ is proved. Several examples when the scale invariant Harnack inequality does not hold are given. For any $\alpha\in (0, 2)$ we also prove the scale invariant Harnack inequality for non-negative harmonic functions with respect to a symmetric L\' evy process in $\R^d$ with a L\' evy density given by \[c|x|^{; ; -d-\alpha}; ; 1_{; ; \{; ; |x|\leq 1\}; ; }; ; +j(|x|)1_{; ; \{; ; |x|>1\}; ; }; ; , \] where \[0\leq j(r)\leq cr^{; ; -d-\alpha}; ; \textrm{; ; for all }; ; r>1.\] We establish the scale invariant Harnack inequality for non-negative harmonic functions with respect to a subordinate Brownian motion with subordinator with Laplace exponent \[\phi(\lambda)=\lambda^{; ; \alpha/2}; ; \ell(\lambda), \ \lambda>0, \] where $\ell$ is a slowly varying function at infinity and $\alpha\in (0, 2).$ Finally, we consider a subordinate Brownian motion where the corresponding subordinator has the Laplace exponent \[ \psi(\lambda)=\frac{; ; \lambda}; ; {; ; \log(1+\lambda)}; ; -1, \ \lambda>0. \] The scale invariant Harnack inequality and logarithmic Sobolev inequality are proved for this process. We obtain an upper bound of heat kernel $p(t, x, y)$ for small $t>0$ and $|x-y|$.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372790-2801 - Slučajni procesi sa skokovima (Vondraček, Zoran, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb