Pregled bibliografske jedinice broj: 439459
Neural networks for predicting hourly natural gas consumption
Neural networks for predicting hourly natural gas consumption // Zbornik 7. skupa o prirodnom plinu, toplini i vodi / Samardžić, Ivan ; Kozak, Dražan ; Stoić, Antun ; Klarić, Štefanija ; Stojšić, Josip (ur.).
Slavonski Brod: Strojarski fakultet Sveučilišta u Slavonskom Brodu, 2009. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 439459 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Neural networks for predicting hourly natural gas consumption
Autori
Tonković, Zlatko ; Zekić-Sušac, Marijana ; Somolanji, Marija
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Zbornik 7. skupa o prirodnom plinu, toplini i vodi
/ Samardžić, Ivan ; Kozak, Dražan ; Stoić, Antun ; Klarić, Štefanija ; Stojšić, Josip - Slavonski Brod : Strojarski fakultet Sveučilišta u Slavonskom Brodu, 2009
ISBN
978-953-6048-50-2
Skup
7. skup o prirodnom plinu, toplini i vodi
Mjesto i datum
Osijek, Hrvatska, 21.10.2009. - 23.10.2009
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
natural gas consumption; neural networks; multilayer perceptron; radial basis function network; fuzzy variable
Sažetak
The aim of the paper is to create a prediction model of natural gas consumption on a regional level by using neural network methodology, and to analyze the results in order to improve prediction accuracy in further research. The output variable consisted of the next-day consumption of natural gas in hourly intervals, while the input space included previous-day consumption in addition to exogenous variables such as meteorological data (temperature prognoses, wind velocity, wind direction), season detection fuzzy variable, month, day type and day of the week. After conducting a feature selection procedure, two neural network algorithms were trained and tested: the multilayer perceptron and the radial basis function network with different activation functions. The results were analyzed regarding critical periods of time where the error is over 10%. Some critical hours within a day, as well as problematic days within the test sample were identified.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
152-1521473-1474 - Napredni postupci izravne izradbe polimernih proizvoda (Raos, Pero, MZOS ) ( CroRIS)
Ustanove:
Strojarski fakultet, Slavonski Brod