Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 435806

Singular behaviour of bounded radially symmetric solutions of $p$ - Laplace nonlinear equation


Pašić, Mervan; Raguž, Andrija
Singular behaviour of bounded radially symmetric solutions of $p$ - Laplace nonlinear equation // International Journal of Mathematical Analysis, 3 (2009), 36; 1775-1788 (podatak o recenziji nije dostupan, članak, znanstveni)


CROSBI ID: 435806 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Singular behaviour of bounded radially symmetric solutions of $p$ - Laplace nonlinear equation

Autori
Pašić, Mervan ; Raguž, Andrija

Izvornik
International Journal of Mathematical Analysis (1334-8671) 3 (2009), 36; 1775-1788

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
radially symmetric solutions ; p-Laplacian ; nonlinear

Sažetak
We study the boundary singular behaviour of radially symmetric solutions $u(x)$ of a class of $p$ - Laplace nonlinear equations: $- \Delta_pu=f(|x|, u, |\nabla u|)$ in a ball $B_R\subset\R^N$, where $u=0$ on $\partial B_R$ and $u\in W^{; ; 1, p}; ; _{; ; loc}; ; (B_R)\cap L^{; ; \infty}; ; (B_R)$. If the nonlinear term $f(x, \eta, \xi)$ satisfies some suitable jumping and singular conditions near $\partial B_R$, we show that box (fractal)-dimension of the graph $G(u)$ of $u(x)$ takes a fractional value $s>N$. It numerically verifies that $G(u)$ is very high concentrated near $\partial B_R$. Next, a kind of singular behavior of $|\nabla u|$ near $\partial B_R$ is established by giving the lower bound for the box-dimension of its graph $G(|\nabla u|)$ which in particular implies $u\notin W^{; ; 1, p}; ; (B_R)$. It generalizes a study on the fractal dimension of the graph of solutions of the one-dimensional $p$ - Laplace nonlinear equation presented in an early paper: Pa\v{; ; s}; ; i\'{; ; c}; ; [J.~Differential Equations~{; ; 190}; ; (2003), 268- 305].

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
036-0361621-1291 - Nelinearna analiza diferencijalnih jednadžbi i dinamičkih sustava (Pašić, Mervan, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Andrija Raguž (autor)

Avatar Url Mervan Pašić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Pašić, Mervan; Raguž, Andrija
Singular behaviour of bounded radially symmetric solutions of $p$ - Laplace nonlinear equation // International Journal of Mathematical Analysis, 3 (2009), 36; 1775-1788 (podatak o recenziji nije dostupan, članak, znanstveni)
Pašić, M. & Raguž, A. (2009) Singular behaviour of bounded radially symmetric solutions of $p$ - Laplace nonlinear equation. International Journal of Mathematical Analysis, 3 (36), 1775-1788.
@article{article, author = {Pa\v{s}i\'{c}, Mervan and Ragu\v{z}, Andrija}, year = {2009}, pages = {1775-1788}, keywords = {radially symmetric solutions, p-Laplacian, nonlinear}, journal = {International Journal of Mathematical Analysis}, volume = {3}, number = {36}, issn = {1334-8671}, title = {Singular behaviour of bounded radially symmetric solutions of $p$ - Laplace nonlinear equation}, keyword = {radially symmetric solutions, p-Laplacian, nonlinear} }
@article{article, author = {Pa\v{s}i\'{c}, Mervan and Ragu\v{z}, Andrija}, year = {2009}, pages = {1775-1788}, keywords = {radially symmetric solutions, p-Laplacian, nonlinear}, journal = {International Journal of Mathematical Analysis}, volume = {3}, number = {36}, issn = {1334-8671}, title = {Singular behaviour of bounded radially symmetric solutions of $p$ - Laplace nonlinear equation}, keyword = {radially symmetric solutions, p-Laplacian, nonlinear} }

Uključenost u ostale bibliografske baze podataka::


  • Zentrallblatt für Mathematik/Mathematical Abstracts





Contrast
Increase Font
Decrease Font
Dyslexic Font