Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 43299

Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor


Beluhan, Damir; Beluhan, Sunčica
Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor // Biotechnology Letters, 22 (2000), 8; 631-635 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 43299 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor

Autori
Beluhan, Damir ; Beluhan, Sunčica

Izvornik
Biotechnology Letters (0141-5492) 22 (2000), 8; 631-635

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
artificial neural network; hybrid state; industrial yeast production; neuro-fuzzy expert

Sažetak
The industrial fed-batch yeast cultivation process has been divided into four different metabolic phases (adaptation, carbon limited, oxygen limited and maturation) by a neuro-fuzzy classification model that consists of 4 applied linguistic rules on 2 state variables: oxygen uptake rate and liquid volume. The membership functions have been automatically adapted by this fuzzy perceptron, i.e., by a supervised learning algorithm initialized by prior operator's knowledge. Process compartmentalization has made easier and more realistic a subsequent state estimation of the biomass concentration with separate artificial neural networks combined with balance equations. Static networks with local recurrent memory structures were used, and the inputs were standard cultivation state variables: respiratory quotient, molasses feed rate, ethanol concentration, etc. This hybrid approach is generally applicable to state estimation or prediction when different sources of process information and knowledge have to be integrated.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Prehrambena tehnologija



POVEZANOST RADA


Projekti:
036006
058402

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Prehrambeno-biotehnološki fakultet, Zagreb

Profili:

Avatar Url Sunčica Beluhan (autor)

Avatar Url Damir Beluhan (autor)


Citiraj ovu publikaciju:

Beluhan, Damir; Beluhan, Sunčica
Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor // Biotechnology Letters, 22 (2000), 8; 631-635 (međunarodna recenzija, članak, znanstveni)
Beluhan, D. & Beluhan, S. (2000) Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor. Biotechnology Letters, 22 (8), 631-635.
@article{article, author = {Beluhan, Damir and Beluhan, Sun\v{c}ica}, year = {2000}, pages = {631-635}, keywords = {artificial neural network, hybrid state, industrial yeast production, neuro-fuzzy expert}, journal = {Biotechnology Letters}, volume = {22}, number = {8}, issn = {0141-5492}, title = {Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor}, keyword = {artificial neural network, hybrid state, industrial yeast production, neuro-fuzzy expert} }
@article{article, author = {Beluhan, Damir and Beluhan, Sun\v{c}ica}, year = {2000}, pages = {631-635}, keywords = {artificial neural network, hybrid state, industrial yeast production, neuro-fuzzy expert}, journal = {Biotechnology Letters}, volume = {22}, number = {8}, issn = {0141-5492}, title = {Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor}, keyword = {artificial neural network, hybrid state, industrial yeast production, neuro-fuzzy expert} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • BA
  • CA





Contrast
Increase Font
Decrease Font
Dyslexic Font