Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 432282

Textual features for corpus visualization using correspondence analysis


Petrović, Saša; Dalbelo Bašić, Bojana; Morin, Annie; Zupan, Blaž; Chauchat, Jean-Hugues
Textual features for corpus visualization using correspondence analysis // Intelligent data analysis, 13 (2009), 5; 795-813 doi:10.3233/IDA-2009-0393 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 432282 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Textual features for corpus visualization using correspondence analysis

Autori
Petrović, Saša ; Dalbelo Bašić, Bojana ; Morin, Annie ; Zupan, Blaž ; Chauchat, Jean-Hugues

Izvornik
Intelligent data analysis (1088-467X) 13 (2009), 5; 795-813

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
text mining; text visualization; letter n-grams; word n-grams; correspondence analysis

Sažetak
Explorative data analysis in text mining essentially relies on effective visualization techniques which can expose hidden relationships among documents and reveal correspondence between documents and their features. In text mining, the documents are most often represented by feature vectors of very high dimensions, requiring dimensionality reduction to obtain visual projections in two- or three-dimensional space. Correspondence analysis is an unsupervised approach that allows for construction of low-dimensional projection space with simultaneous placement of both documents and features, making it ideal for explorative analysis in text mining. Its present use, however, has been limited to word-based features. In this paper, we investigate how this particular document representation compares to the representation with letter n-grams and word n-grams, and find that these alternative representations yield better results in separating documents of different class. We perform our experimental analysis on a bilingual Croatian-English parallel corpus, allowing us to additionally explore the impact of features in different languages on the quality of visualizations.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
036-1300646-1986 - Otkrivanje znanja u tekstnim podacima (Dalbelo-Bašić, Bojana, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Bojana Dalbelo Bašić (autor)

Poveznice na cjeloviti tekst rada:

doi iospress.metapress.com commerce.metapress.com

Citiraj ovu publikaciju:

Petrović, Saša; Dalbelo Bašić, Bojana; Morin, Annie; Zupan, Blaž; Chauchat, Jean-Hugues
Textual features for corpus visualization using correspondence analysis // Intelligent data analysis, 13 (2009), 5; 795-813 doi:10.3233/IDA-2009-0393 (međunarodna recenzija, članak, znanstveni)
Petrović, S., Dalbelo Bašić, B., Morin, A., Zupan, B. & Chauchat, J. (2009) Textual features for corpus visualization using correspondence analysis. Intelligent data analysis, 13 (5), 795-813 doi:10.3233/IDA-2009-0393.
@article{article, author = {Petrovi\'{c}, Sa\v{s}a and Dalbelo Ba\v{s}i\'{c}, Bojana and Morin, Annie and Zupan, Bla\v{z} and Chauchat, Jean-Hugues}, year = {2009}, pages = {795-813}, DOI = {10.3233/IDA-2009-0393}, keywords = {text mining, text visualization, letter n-grams, word n-grams, correspondence analysis}, journal = {Intelligent data analysis}, doi = {10.3233/IDA-2009-0393}, volume = {13}, number = {5}, issn = {1088-467X}, title = {Textual features for corpus visualization using correspondence analysis}, keyword = {text mining, text visualization, letter n-grams, word n-grams, correspondence analysis} }
@article{article, author = {Petrovi\'{c}, Sa\v{s}a and Dalbelo Ba\v{s}i\'{c}, Bojana and Morin, Annie and Zupan, Bla\v{z} and Chauchat, Jean-Hugues}, year = {2009}, pages = {795-813}, DOI = {10.3233/IDA-2009-0393}, keywords = {text mining, text visualization, letter n-grams, word n-grams, correspondence analysis}, journal = {Intelligent data analysis}, doi = {10.3233/IDA-2009-0393}, volume = {13}, number = {5}, issn = {1088-467X}, title = {Textual features for corpus visualization using correspondence analysis}, keyword = {text mining, text visualization, letter n-grams, word n-grams, correspondence analysis} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font