Pregled bibliografske jedinice broj: 43056
On calculating with lower order Chebyshev splines
On calculating with lower order Chebyshev splines // Curve and Surface Design / Laurent, P.J. ; Sablonniere, P. ; Schumaker, L.L. (ur.).
Nashville (TN): Vanderbilt University Press, 2000. str. 343-353 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 43056 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On calculating with lower order Chebyshev splines
Autori
Rogina, Mladen ; Bosner, Tina
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Curve and Surface Design
/ Laurent, P.J. ; Sablonniere, P. ; Schumaker, L.L. - Nashville (TN) : Vanderbilt University Press, 2000, 343-353
Skup
Curves and Surfaces 4
Mjesto i datum
Saint-Malo, Francuska, 01.07.1999. - 07.07.1999
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
spline; Chebyshev system; recurrence
Sažetak
We develop a technique to calculate with Chebyshev Splines of orders $3$ and $4$,
based on the known derivative formula for Chebyshev splines and an Oslo type algorithm.
We assume that splines in the reduced system are simple enough to calculate.
Local bases of Chebyshev splines of order $3$ and $4$ can thus be evaluated as positive
linear combinations of less smooth Chebyshev B-splines. The coefficients in such
linear combinations are discrete Chebyshev splines, normalized so as to make a partition of
unity. There are a number of interesting special cases, such as Foley's $\nu$-splines,
Chebyshev polynomial splines ($q$-splines), and splines in tension which can be calculated
stably by such formul\ae.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037011
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb