Pregled bibliografske jedinice broj: 428457
Delaunay polytopes in lattices
Delaunay polytopes in lattices // Lattices and applications, GTEM summer school, Ecole Polytechnique Federale de Lausanne
Lausanne, Švicarska, 2009. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 428457 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Delaunay polytopes in lattices
Autori
Dutour Sikirić, Mathieu
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
Lattices and applications, GTEM summer school, Ecole Polytechnique Federale de Lausanne
/ - , 2009
Skup
Lattices and applications, GTEM summer school, Ecole Polytechnique Federale de Lausanne
Mjesto i datum
Lausanne, Švicarska, 20.07.2009. - 24.07.2009
Vrsta sudjelovanja
Plenarno
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
lattices; reduction; polytopes
Sažetak
A delaunay polytope of a lattice L is a polytope, which is defined as the convex hull S inter L with S a sphere that does not contain lattices points in its interior. A Delaunay polytope is perfect if the set S inter L determines the lattice up to isometry. We introduce here the theory of the Erdahl cone to describe such polytopes. The Delaunay polytopes of a lattice L determine the covering radiusand we describe a new theory of covering maxima, which uses corresponding notions of perfectness and eutaxy for Delaunay polytopes.
Izvorni jezik
Engleski
Znanstvena područja
Matematika