Pregled bibliografske jedinice broj: 426527
Rose-Surfaces
Rose-Surfaces // Abstracts, 14th Colloquium on Geometry and Graphics / Ema Jurkin, Marija Šimić (ur.).
Zagreb: Hrvatsko društvo za geometriju i grafiku, 2009. str. 12-12 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 426527 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Rose-Surfaces
Autori
Gorjanc Sonja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Abstracts, 14th Colloquium on Geometry and Graphics
/ Ema Jurkin, Marija Šimić - Zagreb : Hrvatsko društvo za geometriju i grafiku, 2009, 12-12
Skup
14th Colloquium on Geometry and Graphics
Mjesto i datum
Velika, Hrvatska, 06.09.2009. - 11.09.2009
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
roses; singularities of algebraic surfaces; Mathematica
Sažetak
We consider roses or rhondonea curves R(m, n) which can be expressed by polar equations $r(\varphi)=\cos\frac{;m};{;n};\, \varphi$ or $r(\varphi)=\sin\frac{;m};{;n};\, \varphi$, where $\frac{;m};{;n};$ is a rational number in the simplest form. For such curves we construct surfaces in the following way: Let P(0, 0, p) be any point on the axis z and let R(m, n) be a rose in the plane z=0. A rose-surface R(m, n, p) is the system of circles which lie in the planes $\zeta$ through the axis z and have diameters $\overline{;PR_i};$, where $R_i\neq O$ are the intersection points of the rose $R(m, n)$ and the plane $\zeta$.}; We derive the parametric and implicit equations of R(m, n, p), visualized their shapes with the program Mathematica and investigate some of their properties such as the number and the kind of their singular lines and points.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima
Ustanove:
Građevinski fakultet, Zagreb