Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 426246

Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks


Bolanča, Tomislav; Cerjan Stefanović, Štefica; Ukić, Šime; Rogošić, Marko
Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks // Journal of liquid chromatography & related technologies, 32 (2009), 19; 2765-2778 doi:10.1080/10826070903287815 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 426246 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks

Autori
Bolanča, Tomislav ; Cerjan Stefanović, Štefica ; Ukić, Šime ; Rogošić, Marko

Izvornik
Journal of liquid chromatography & related technologies (1082-6076) 32 (2009), 19; 2765-2778

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
ion chromatography ; temperature of separation process ; retention model ; cascade forward artificial neural network ; back propagation artificial neural network

Sažetak
The most important part of the complex ion chromatography method development process is retention modeling. It tries to integrate the demands for high quality ion chromatography with the demands for low consumption of chemicals, fast analysis and short time of method development. This work compares the properties of cascade forward and back propagation artificial neural network in development of temperature dependent retention models. The retention times of bromate, bromide, nitrite, iodide and perchlorate were modeled in relation with temperature of separation process, concentration of hydroxide eluent competing ion and eluent flow rate. Artificial neural networks were optimized in term of selecting the optimal training algorithm, optimal number of hidden layer neurons, activation function and number of experiments needed for modeling procedure. The retention model based on cascade forward methodology exhibited superior predictive ability and therefore should be the method of first choice for the temperature dependent optimization in ion chromatography.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Kemijsko inženjerstvo



POVEZANOST RADA


Projekti:
MZOS-125-1252970-3005 - Biokeramički, polimerni i kompozitni nanostrukturirani materijali (Ivanković, Hrvoje, MZOS ) ( CroRIS)
MZOS-125-1253092-3004 - Procesi ionske izmjene u sustavu kvalitete industrijskih voda (Bolanča, Tomislav, MZOS ) ( CroRIS)

Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb

Poveznice na cjeloviti tekst rada:

doi dx.doi.org www.tandfonline.com

Citiraj ovu publikaciju:

Bolanča, Tomislav; Cerjan Stefanović, Štefica; Ukić, Šime; Rogošić, Marko
Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks // Journal of liquid chromatography & related technologies, 32 (2009), 19; 2765-2778 doi:10.1080/10826070903287815 (međunarodna recenzija, članak, znanstveni)
Bolanča, T., Cerjan Stefanović, Š., Ukić, Š. & Rogošić, M. (2009) Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks. Journal of liquid chromatography & related technologies, 32 (19), 2765-2778 doi:10.1080/10826070903287815.
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan Stefanovi\'{c}, \v{S}tefica and Uki\'{c}, \v{S}ime and Rogo\v{s}i\'{c}, Marko}, year = {2009}, pages = {2765-2778}, DOI = {10.1080/10826070903287815}, keywords = {ion chromatography, temperature of separation process, retention model, cascade forward artificial neural network, back propagation artificial neural network}, journal = {Journal of liquid chromatography and related technologies}, doi = {10.1080/10826070903287815}, volume = {32}, number = {19}, issn = {1082-6076}, title = {Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks}, keyword = {ion chromatography, temperature of separation process, retention model, cascade forward artificial neural network, back propagation artificial neural network} }
@article{article, author = {Bolan\v{c}a, Tomislav and Cerjan Stefanovi\'{c}, \v{S}tefica and Uki\'{c}, \v{S}ime and Rogo\v{s}i\'{c}, Marko}, year = {2009}, pages = {2765-2778}, DOI = {10.1080/10826070903287815}, keywords = {ion chromatography, temperature of separation process, retention model, cascade forward artificial neural network, back propagation artificial neural network}, journal = {Journal of liquid chromatography and related technologies}, doi = {10.1080/10826070903287815}, volume = {32}, number = {19}, issn = {1082-6076}, title = {Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks}, keyword = {ion chromatography, temperature of separation process, retention model, cascade forward artificial neural network, back propagation artificial neural network} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • CA Search (Chemical Abstracts)


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font