Pregled bibliografske jedinice broj: 426246
Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks
Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks // Journal of liquid chromatography & related technologies, 32 (2009), 19; 2765-2778 doi:10.1080/10826070903287815 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 426246 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Development of temperature dependent retention models in ion chromatography by the cascade forward and back propagation artificial neural networks
Autori
Bolanča, Tomislav ; Cerjan Stefanović, Štefica ; Ukić, Šime ; Rogošić, Marko
Izvornik
Journal of liquid chromatography & related technologies (1082-6076) 32
(2009), 19;
2765-2778
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
ion chromatography ; temperature of separation process ; retention model ; cascade forward artificial neural network ; back propagation artificial neural network
Sažetak
The most important part of the complex ion chromatography method development process is retention modeling. It tries to integrate the demands for high quality ion chromatography with the demands for low consumption of chemicals, fast analysis and short time of method development. This work compares the properties of cascade forward and back propagation artificial neural network in development of temperature dependent retention models. The retention times of bromate, bromide, nitrite, iodide and perchlorate were modeled in relation with temperature of separation process, concentration of hydroxide eluent competing ion and eluent flow rate. Artificial neural networks were optimized in term of selecting the optimal training algorithm, optimal number of hidden layer neurons, activation function and number of experiments needed for modeling procedure. The retention model based on cascade forward methodology exhibited superior predictive ability and therefore should be the method of first choice for the temperature dependent optimization in ion chromatography.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Kemijsko inženjerstvo
POVEZANOST RADA
Projekti:
MZOS-125-1252970-3005 - Biokeramički, polimerni i kompozitni nanostrukturirani materijali (Ivanković, Hrvoje, MZOS ) ( CroRIS)
MZOS-125-1253092-3004 - Procesi ionske izmjene u sustavu kvalitete industrijskih voda (Bolanča, Tomislav, MZOS ) ( CroRIS)
Ustanove:
Fakultet kemijskog inženjerstva i tehnologije, Zagreb
Profili:
Marko Rogošić
(autor)
Tomislav Bolanča
(autor)
Štefica Cerjan-Stefanović
(autor)
Šime Ukić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- CA Search (Chemical Abstracts)