Pregled bibliografske jedinice broj: 425520
Harnack Inequalities for some Levy Processes
Harnack Inequalities for some Levy Processes // Potential analysis, 32 (2010), 3; 275-303 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 425520 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Harnack Inequalities for some Levy Processes
Autori
Mimica, Ante
Izvornik
Potential analysis (0926-2601) 32
(2010), 3;
275-303
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Harnack inequality; random walk; Green function; Poisson kernel; stable process; harmonic function; subordinator; subordinate Brownian motion
Sažetak
In this paper we prove Harnack inequality for nonnegative functions which are harmonic with respect to random walks in $\R^d$. We give several examples when the scale invariant Harnack inequality does not hold. For any $\alpha\in (0, 2)$ we also prove the Harnack inequality for nonnegative harmonic functions with respect to a symmetric L\' evy process in $\R^d$ with a L\' evy density given by $c|x|^{; ; ; ; -d-\alpha}; ; ; ; 1_{; ; ; ; \{; ; ; ; |x|\leq 1\}; ; ; ; }; ; ; ; +j(|x|)1_{; ; ; ; \{; ; ; ; |x|>1\}; ; ; ; }; ; ; ; $, where $0\leq j(r)\leq cr^{; ; ; ; -d-\alpha}; ; ; ; $, $\forall r>1$, for some constant $c$. Finally, we establish the Harnack inequality for nonnegative harmonic functions with respect to a subordinate Brownian motion with subordinator with Laplace exponent $\phi(\lambda)=\lambda^{; ; ; ; \alpha/2}; ; ; ; \ell(\lambda)$, $\lambda>0$, where $\ell$ is a slowly varying function at infinity and $\alpha\in (0, 2).$
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037-0372790-2801 - Slučajni procesi sa skokovima (Vondraček, Zoran, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Profili:
Ante Mimica
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet