Pregled bibliografske jedinice broj: 421656
Visualiztions of Rose-Surfaces
Visualiztions of Rose-Surfaces // Conference on Geometry Theory and Applications Book of Abstracts / Bohumir Bastl, Miroslav Lavicka (ur.).
Plzeň: Vydavatelsky servis, 2009. (poster, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 421656 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Visualiztions of Rose-Surfaces
Autori
Gorjanc, Sonja
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Conference on Geometry Theory and Applications Book of Abstracts
/ Bohumir Bastl, Miroslav Lavicka - Plzeň : Vydavatelsky servis, 2009
ISBN
978-80-86843-27-8
Skup
Conference on Geometry Theory and Applications
Mjesto i datum
Plzeň, Češka Republika, 29.06.2009. - 02.07.2009
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
algebraic surfaces; higher singularities; roses; rose-surfaces
Sažetak
Roses or rhodonea curves $R(n, d)$ can be expressed by polar equations $r(\varphi)=\cos\frac{; ; ; m}; ; ; {; ; ; n}; ; ; \, \varphi$ or $r(\varphi)=\sin\frac{; ; ; m}; ; ; {; ; ; n}; ; ; \, \varphi$, where $\frac{; ; ; n}; ; ; {; ; ; d}; ; ; $ is a rational number in the simplest form. For such curves we construct surfaces in the following way: Let $P(0, 0, p)$ be any point on the axis $z$ and let $R(n, d)$ be a rose in the plane $z=0$. A rose-surface $\mathcal R(n, d, p)$ is the system of circles which lie in the planes $\zeta$ through the axis $z$ and have diameters $\overline{; ; ; PR_i}; ; ; $, where $R_i\neq O$ are the intersection points of the rose $R(n, d)$ and the plane $\zeta$. We derive the parametric and implicit equations of $\mathcal R(n, d, p)$, visualized their shapes with the program Mathematica and investigate some of their properties such as its order and the number and kind of their singular lines and points.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
082-0000000-0893 - Krivulje i plohe u euklidskom i neeuklidskim prostorima
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Sonja Gorjanc
(autor)