Pregled bibliografske jedinice broj: 41467
Noise detection and elimination in data preprocessing : experiments in medical domains
Noise detection and elimination in data preprocessing : experiments in medical domains // Applied artificial intelligence, 14 (2000), 2; 205-223 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 41467 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Noise detection and elimination in data preprocessing : experiments in medical domains
(Noise detection and elimination in data preprocessing : experiments in medical domains)
Autori
Gamberger, Dragan ; Lavrač, Nada ; Džeroski, Sašo
Izvornik
Applied artificial intelligence (0883-9514) 14
(2000), 2;
205-223
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
machine learning; induction; noise detection
Sažetak
Compression measures used in inductive learners, such as measures based on the Minimum Description Length principle, can be used as a basis for grading candidate hypotheses. Compression-based induction is suited also for handling noisy data. This paper shows that a simple compression measure can be used to detect noisy training examples, where noise is due to random classification errors. A technique is proposed in which noisy examples are detected and eliminated from the training set, and a hypothesis is then built from the set of remaining examples. This noise elimination method was applied to preprocess data for four machine learning algorithms, and evaluated on selected medical domains.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus