ࡱ>  *,$%+!$&PP/ =!@ "@ # $ %EXTERNAL COSTS: AN ATTEMPT TO MAKE POWER GENERATION A FAIR GAME (CASE STUDY CROATIA) Tea Kovacevic, Zeljko Tomsic, Nenad Debrecin Faculty of Electrical Engineering and Computing Zagreb, Croatia ABSTRACT External costs of electricity represent the monetary value of the environmental damage caused by electricity generation. They are here calculated applying the impact pathway methodology on Croatian specific conditions. This paper estimates the external costs of coal and gas fired pEXTERNAL COSTS: AN ATTEMPT TO MAKE POWER GENERATION A FAIR GAME (CASE STUDY CROATIA) Tea Kovacevic, Zeljko Tomsic, Nenad Debrecin Faculty of Electrical Engineering and Computing Zagreb, Croatia ABSTRACT External costs of electricity represent the monetary value of the environmental damage caused by electricity generation. They are here calculated applying the impact pathway methodology on Croatian specific conditions. This paper estimates the external costs of coal and gas fired power plants determined as main candidates for Croatian power system expansion till 2030. It is analyzed how the estimated external costs, when incorporated into total production costs, would affect the competitiveness of fossil-fired plants compared to other electricity generation options, i.e. how they influence the optimal expansion strategy of the Croatian power system. I. INTRODUCTION External costs of electricity are the costs imposed on society and the environment that are not accounted for by the producers and consumers of electricity, i.e. that are not included in its market price. External costs should reflect the price of the environmental damage caused by electricity generation chain. They include damage to the natural and built environment, such as effects of air pollution on health, buildings, crops, forests and global warming; occupational disease and accidents; and reduced amenity from visual intrusion of plant or emissions of noise. Electricity generation chain embraces activities such as construction of new power plant, fuel extraction, fuel transport and processing, power generation, waste disposal and electricity transmission. The largest external costs within that cycle are those attributable to the power generation itself, i.e. at the power plant location, and thus are given highest priority. II. METHOD DESCRIPTION Impact assessment and valuation are performed using the 'damage function' or 'impact pathway' approach, which relates to a sequence of links between the burden and its impact. This approach assesses impacts in a logical and transparent manner, going stepwise as shown in  REF _Ref450186314 \h  \* MERGEFORMAT Figure 1. 1. Emission quantification2. Atmospheric transport and dispersion3. Impact estimation (dose-response)4. Damage valuation (external costs)Figure  SEQ Figure \* ARABIC 1 Impact pathway methodology, (1( The impact pathway methodology consists of the following steps: (i) quantification of emissions, (ii) calculation of the associated ambient concentration increase by means of atmospheric dispersion and transport models, (iii) estimation of physical impacts using various exposure-response functions, and (iv) finally monetary evaluation of damages. In this analysis, the EcoSense model was used to assess damage costs caused by emissions from fossil-fired power plants in Croatia. It has to be stressed that environmental damage does not necessarily constitute in its entirety an external effect, so external cost might be different from the calculated damage cost. Impact pathway method requires a detailed description of the reference environment, which in this case includes meteorological conditions affecting dispersion and chemistry of atmospheric pollutants, functions linking exposure to a particular pollutant (i.e. pollutant ambient concentration) with the health effect it causes, population density and age structure in the observed area (locally and for the whole of Europe), and costs of the estimated health effects. Each of these steps inevitably incorporates a dose of uncertainty, due to atmospheric model imperfections, transferability of data from one context to another (e.g. extrapolation of exposure-response functions from the laboratory to the field and from one geographical location to another, transferability of monetary values from one country to another), the fact that some impacts cannot be quantified or monetized at all, etc. However, there is a consensus among experts that transference of input parameters and results is to be preferred to ignoring some impact categories. Focus of this analysis has been put on the effects of ambient air pollution on human health, as one of the priority impacts of electricity generation. Since the impact pathway methodology yields rather site-specific results, the analysis was conducted for the most representative power plant locations and most probable generation technologies. For locations this means choosing flat urban areas in the continental part of the country, while for technologies it assumes the best available ones that comply with environmental standards in Croatia and are considered to be candidates for future construction. The analyzed burdens relate only to routine emissions, while accidents are not taken into account. Since air pollutants are transported over large distances crossing national borders, their impacts are quantified not only on the local level, i.e. within 50 km from the source, but also for the whole of Europe. III. THE ECOSENSE SOFTWARE The software used here for calculation of externalities associated with electricity generation is EcoSense, developed within the European Community project ExternE. EcoSense (2( was developed to support the assessment of priority impacts resulting from the exposure to airborne pollutants. It constitutes of several databases: technology, exposure-response and reference environment databases. The reference technology database holds a small set of technical data describing the emission source (power plant) that are mainly related to air quality modeling, including e.g. emission factors, flue gas characteristics, stack geometry and the geographic coordinates of the site. The impact assessment module calculates the physical impacts and the resulting damage costs by applying the exposure-response functions, based on receptor distribution and concentration levels of air pollutants from the reference environment database. EcoSense also provides two air transport models (local and regional), to cover different pollutants and different scales. One is The Industrial Source Complex Model (ISC, developed by the US-EPA), which is a Gaussian plume model used for transport modeling of primary air pollutants (SO2, NOx, particulates) on a local scale. The other is The Windrose Trajectory Model (WTM, developed in Harwell Laboratory, UK) used to estimate the concentration and deposition of acid species on a European-wide scale. IV. EMISSIONS The most important pollutants emitted from fossil-fuelled power plants are carbon dioxide (CO2), particulate matter (specially relevant for health effects are fine particles less than 10 and 2,5 microns in diameter respectively, so called PM10 and PM2,5), sulfur dioxide (SO2) and nitric oxides (NOx, i.e. mainly NO later oxidized to NO2). Apart from that, SO2 and NOx are subject to chemical transformations in the atmosphere, forming the so-called secondary pollutants: sulfuric and nitric acid (H2SO4 and HNO3), sulfate and nitrate aerosols and tropospheric ozone (O3). Both primary and secondary pollutants cause certain health effects, but here are considered only those for which the atmospheric modeling and the exposure-response functions are provided. Since modeling of ozone formation involves considerable complexity in both plume dynamics and chemistry, health effects associated with ozone are not quantified here. Impacts of global warming are not covered either because of the very different mechanism and global nature of impact. V. ATMOSPHERIC DISPERSION AND TRANSPORT MODELS On the local scale, i.e. within 50 km from the source, chemical transformations of pollutants can be neglected and thus their concentrations predicted using Gaussian plume dispersion models. These models assume source emissions are carried in a straight line by the wind, mixing with the surrounding air to produce pollutant concentrations with a Gaussian spatial distribution. One of them, used in EcoSense, is the Industrial Source Complex Short-Term model, version 2 (ISCST2) developed by the U.S. EPA. The area analyzed in the local dispersion is represented by 10 x 10 grid of quadratic cells each 100 km2 in size, with the power plant positioned in the grid center. The model calculates hourly concentration values of SO2, NOx and particulate matter averaged over one year at the center of each cell. Gaussian models require detailed description of meteorological data at the plant location provided by the user. They are valid up to 50 km from the plant. However, pollutant transport extends over much greater distances, when chemical reactions and formation of secondary pollutants can no longer be neglected. Therefore, different models are required for assessing long-range (regional) transport of pollutants, the most common are the Lagrangian trajectory models. Receptor-oriented trajectory model examines incoming trajectories of air parcels arriving from different directions to the receptor point (which is characterized by its mean annual windrose), moving at a representative wind speed and constant mixing height. European-wide transport of pollution is in the EcoSense software handled by the Windrose Trajectory Model. Europe is represented by a 42 x 27 matrix of large cells, each 10000 km2. The outputs from the model are atmospheric concentrations and deposition of emitted species and secondary pollutants in each grid cell. All input data required to run the Windrose Trajectory Model are provided by the EcoSense database. VI. PUBLIC HEALTH EFFECTS Combustion processes cause an increase in the concentration of certain atmospheric pollutants that might be causing adverse health effects within the general public. There is now a broad-based body of evidence showing small but definite increases in risks associated with increases in air pollution, with no convincing evidence of threshold. Acute health effects, which occur on the same day as increases in air pollution or very soon thereafter, should be distinguished from the chronic or delayed effects of possible long-term exposure. There are less exposure-response functions for chronic effects since they are more difficult to estimate than the acute ones. It should be stressed that the acute mortality effects occur predominantly in older people, almost certainly with serious pre-existing health problems, though the precise mechanism of action is not yet resolved. Length of life lost in those who die prematurely following higher pollution days is also unknown, but is likely to be short a few weeks or months. Averaged reduced life expectancy among those who die prematurely from chronic effects of air pollution is likely to be much greater and is measured in years. The incremental air pollution attributable to power generation is a mixture of pollutants emitted from a power plant and those formed subsequently in atmospheric chemical reactions. Complex studies were made to disaggregate that mixture and determine separate exposure-response functions for each pollutant (particles, SO2, NOx and ozone). Most of the exposure-response functions used in the EcoSense model are chosen from studies which showed statistically significant relationship between pollutant and health endpoint and which eliminated possible confounding factors due to other pollutants. The strength of these studies is that relationships, expressed as percentage change in health effect per unit exposure, seem remarkably invariant to changes in population, location and pollution mixtures. For ease of implementation, the exposure-response functions are linearized, assuming independence of background levels and no threshold existence. Extrapolation of exposure-response functions to very low pollution increments, particularly at distances far away from source, without a threshold, may lead to an overestimation of effects. Quantitative relationships have been established linking air pollution with a number of health endpoints. Health impacts are divided into three categories: mortality, morbidity and accidents. Only first two categories are observed here since they refer to normal operation of a power plant. It is dealt with premature mortality (acute and chronic), restricted activity days, hospital admissions due to respiratory and cerebrovascular problems, as well as emergency room visits due to exacerbation of asthma and chronic obstructive pulmonary disease (COPD). Here is how additional mortality and restricted activity days due to air pollution can be calculated, based on the given exposure-response functions: Mortality (number of cases) = exposure-response slope/100 ( baseline mortality ( population of the observed area ( pollutant concentration increase ((g/m3). Restricted activity days (number of days) = exposure-response slope/100 ( population of the observed area ( percentage of adults ( pollutant concentration increase ((g/m3). Table  SEQ Table \* ARABIC 1 Summary of exposure-response functions and monetary values used here (1( Impact CategoryMonetary value (ECU)(1)Pollutante-r slope (2)Receptor: Total populationAcute mortality(3)155.000PM10 and nitrates0,040%PM2,5 and sulfates0,068%SO20,072%NOx0,034%Chronic mortality(3)83.000PM10 and nitrates0,390%PM2,5 and sulfates0,640%Hospital admissions7.870PM10 and nitrates2,07(10-6respiratoryPM2,5 and sulfates3,46(10-6SO22,04(10-6NOx2,34(10-6Hospital admissions7.870PM10 and nitrates5,04(10-6cerebrovascularPM2,5 and sulfates8,04(10-6Emergency room visits223PM10 and nitrates13,7(10-6for asthma and COPDPM2,5 and sulfates22,8(10-6Receptor: Adults(4)Restricted activity days75PM10 and nitrates0,025PM2,5 and sulfates0,042(1) mortality values given at a discount rate of 3%, based on YOLL. (2) slope of the exposure-response function is expressed in percentage change in annual mortality rate per unit of pollutant concentration increase (% change per (g/m3) for mortality, while in number of events per person per (g/m3 for morbidity. (3) baseline mortality in Croatia is 1,1%. (4) age group 14-65, in Croatia 68% of total population. VII. MONETARY VALUATION OF HEALTH EFFECTS Health impacts are generally valued more highly than the conventional economic approach would suggest. Mortality impacts can be valued based on the willingness to pay (WTP) for reduction of the risk of death, or on the willingness to accept compensation (WTA) for an increase in risk. WTP or WTA is converted into the value of statistical life (VSL) dividing it by the change in risk. For example, if the estimated WTP is ECU 100 for a reduction in the risk of death of 10-4, the value of statistical life is estimated at 1 million ECU. However, increased air pollution can not actually cause 'additional' deaths it can only reduce life expectancy slightly. For deaths arising from illnesses linked to air pollution it is recommended to use years of life lost (YOLL) calculation, while VSL approach only for valuing fatal accidents and cases where general population is affected and not only risk groups. Value of one year of life lost (vYOLL) can be determined from the VSL estimate, applying the formula below, if one knows the age of the reference group and the discount rate to be applied to present vs. future years of life.  EMBED Equation.3 , where: r discount rate (usually 3%), Tl number of years of life lost. If e.g. life expectancy for a prime age male is assumed 37 years and if VSL equals 3,1 million ECU, value of YOLL turns out around 100.000 ECU with zero discount rate, i.e. 134.000 ECU with discount rate of 3%. Morbidity impacts valuation is based on the cost of illness, that comprises the value of time lost due to the illness (valued through lost wages), the value of the lost utility because of pain and suffering and the costs of any expenditures on averting and mitigating consequences of illness. VIII. APPLICATION OF THE IMPACT PATHWAY METHODOLOGY ON CROATIAN POWER SYSTEM The aim of the analysis made here is to estimate costs of health damages through air pollution caused by electricity generation in Croatia. Two types of fossil-fired power plants are observed, one coal and one natural gas fired facility, since they are among candidates for future power system expansion. Both power plants are assumed to comply with domestic and European Unions emission standards, so the emission rates equal the upper emission limits. Basic technical end environmental data are given in  REF _Ref450279940 \h  \* MERGEFORMAT Table 2. Table  SEQ Table \* ARABIC 2 Technical data and emission rates of the analyzed power plants Coal facilityNatural gas facilityGross/net capacity380/350 MW370/350 MWHours on full load6570 h/yr6570 h/yrFlue gas volume1,2E+6 m3/h2,1E+6 m3/hFlue gas temperature403 K403 KStack height200 m200 mStack diameter6 m6 mEmissionsmg/m3g/kWhmg/m3g/kWhParticulates500,16800SO24001,34300NOx6502,1821000,6CO22,45E+5822,90,43E+5258,55 Both facilities are assumed to be located in the densely populated urban area of Zagreb, the Croatian capital. Geographical coordinates of the site are 16( E and 45,8( N. Impact analysis on the local level, i.e. within 50 km from the source, displays a local (so called fine) grid with 100 km2 large cells, the average pollutant increment ((g/m3) in each cell and the total number of health events in the whole local grid. To calculate atmospheric dispersion on the local level, hourly meteorological data for the plant site are required, while for estimation of health impact population density in each cell of the local grid is needed. The basic meteorological data for Zagreb monthly temperature extremes and frequency of wind speeds and wind directions (so called windrose) in the 15-year sequence are obtained from the Croatian State Meteorological and Hydrological Service. Since no continuous measurements of wind and temperature were available, and because some additional parameters describing atmospheric conditions are needed for local dispersion modeling, meteorological data set had to be constructed before imported into the EcoSense. Average annual windrose for Zagreb and an approximation of daily temperature curve for each season are given in  REF _Ref450368150 \h  \* MERGEFORMAT Figure 2. Figure  SEQ Figure \* ARABIC 2 Annual windrose and approximated temperature daily flow at Zagreb site Zagreb is not a very windy area, which can be concluded from rather high frequency of calms (13%). The prevailing winds are from north (19%) and northeast (11%). The largest average wind speeds, occurring in northeasterly and southwesterly directions, do not exceed 3 m/s (at 10 m above ground). According to the demographic data for Zagreb and Croatia, population density in the outer city area (comprising 4 cells around the plant, altogether 400 km2) is set to 3000 people/km2, while in the remaining 96 cells to 100 people/km2. Average population density in Croatia equals 85 inhabitants/km2. IX. ESTIMATION OF EXTERNAL COSTS DUE TO OPERATION OF THE ANALYZED POWER PLANTS Local analysis Based on power plants emission rates and local meteorological data, average annual concentrations of SO2, NOx and particulates on the local level were calculated, using the ISCST2 local dispersion model, incorporated in EcoSense. Spatial distributions of pollutant increments within 50 km of the coal power plant are shown in the figures below. The highest concentrations occur in the very grid cell where the plant is situated and in cells downwind the stack, i.e. southwest from the plant. The highest concentration of particulate matter amounts to 0,083 (g/m3, the highest NOx is 1,1 (g/m3 while SO2 0,7 (g/m3.  Figure  SEQ Figure \* ARABIC 3 Ambient concentration increase of SO2 and NOx due to coal power plant To calculate health impacts in the analyzed area, the concentration field for each pollutant has to be multiplied by the population field and the appropriate exposure-response coefficient. Health impacts have no common measure, mortality is expressed either in number of cases or in years of life lost, while morbidity in number of events or number of days. To sum them all up in a single number, health effects should be monetized, i.e. multiplied by their monetary values. Spatial distribution of the monetized health damage due to particulates-caused pollution, per unit of electricity generated in the power plant, is shown on the right-hand side of  REF _Ref450112363 \h  \* MERGEFORMAT Figure 4. Mortality impacts are here valued using YOLL.  Figure  SEQ Figure \* ARABIC 4 Spatial distribution of particulates concentration and monetized health damages The level of health effects decisively depends on the number of people affected. Here the largest health damages occur in the four grid cells around the power plant, where the population density is 3000 persons/km2 (densely populated urban area). Health damages in other grid cells are almost negligible, due to 30 times lower population density and lower pollution increments at larger distances from source. Health damages also much depend on the way mortality is valued if calculated via VSL damages are several times higher than via YOLL. The largest portion of damage costs, over 90%, account for mortality endpoints, specially if calculated via VSL.  REF _Ref450144800 \h  \* MERGEFORMAT Table 3 gives local damage (external) costs per unit of electricity produced and of pollutant emitted from a coal and a gas fired power plant. Total local costs due to air pollution (particulates, SO2 and NOx), amount to around 9 mECU/kWh via VSL, i.e. 1,1 mECU/kWh via YOLL. If the population density in the whole observed area equaled the average value for Croatia (85/km2), the damage costs would be only 0,61 mECU/kWh (VSL) i.e. 0,08 mECU/kWh (YOLL). Health impacts of the gas-fired power plant originate only from NOx emissions. Total health damages on the local level amount to only 0,5 mECU/kWh (VSL), i.e. 0,02 mECU/kWh (YOLL). With the average population density of 85 inhab/km2, health impacts and the associated damage costs would be only 0,03 mECU/kWh. Table  SEQ Table \* ARABIC 3 Damage costs of air pollution caused by electricity generation * VSLYOLLVSLYOLL(mECU/kWh)(ECU/t)Coal local scaleParticulates2,080,8412.4145.003SO23,880,152.889110NOx2,970,121.36253Total local costs8,941,10Coal regional scaleParticulates (a)0,641,693.82510.082SO28,380,326.237235NOx4,350,161.99375Sulfates (a)3,7310,162.777 (b)7.568 (b)Nitrates (a)6,7717,983.101 (b)8.240 (b)Total regional costs23,8630,32Gas local scaleNOx0,500,0283533Total local costs0,500,02Gas regional scaleNOx1,150,051.91576Nitrates (a)2,035,383.383 (b)8.962 (b)Total regional costs3,185,42* health damage due to tropospheric ozone and global warming is not included. (a) VSL-based chronic mortality due to regional-level particulates, sulfates and nitrates is not quantified in EcoSense, so the YOLL value is larger. (b) sulfates are expressed per ton of SO2, while nitrates per ton of NOx. Regional analysis Regional analysis of health impacts caused by operation of the two analyzed power plants was conducted for the region of Europe. Since meteorological and population data for the whole of Europe are incorporated in the EcoSense model, the only necessary input data for the regional analysis were power plants latitude and longitude and emission rates. Table  SEQ Table \* ARABIC 4 Maximal regional concentrations ((g/m3) CoalNatural gasParticulates0,007-SO20,052-NOx0,0690,019Sulfates0,008-Nitrates0,0280,008 According to the European-wide atmospheric transport and distribution, there is an increase in ambient concentrations predominantly in the north and northeast from Croatia (Austria, Hungary, Slovakia). Maximal pollutant increments are given in  REF _Ref450354590 \h  \* MERGEFORMAT Table 4. Health impact distribution depends on the population density, and is similar to the concentration field. Health damage costs on the European level, due to operation of the analyzed power plants, are given in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3. They are much larger than local damage costs, due to more people affected. Since VSL-based chronic mortality is not quantified on the regional level, YOLL-based mortality (and therefore total damage costs) is larger. Total regional health damage amounts to 30,3 mECU/kWh for the coal power plant, and 5,4 mECU/kWh for the gas power plant. It has to be stressed the figures in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3 include neither NOx damage through ozone nor CO2 damage through global warming. There are suggestions to set the average ozone damage for the whole Europe to 1500 ECU/t NO2, (3(. The range of suggested CO2 damage cost is very broad (3,8-139 ECU/t CO2), with the geometric mean estimate of 29 ECU/t. X. INCORPORATING DAMAGE COSTS IN POWER SYSTEM EXPANSION PLANNING Although the calculated damage costs do not necessarily constitute externalities in their entirety, they can be used as good indicators of external costs. External costs can serve as an additional criterion for the evaluation of different energy scenarios, thus introducing the environmental aspects into the social cost optimization process. Only the air pollution ( health impact pathway was observed here, i.e. only impacts of coal and natural gas combustion. Other fuel cycle steps and externalities of nuclear and hydro facilities are not taken into account. After having external costs estimated for two more or less representative power plants (reference technologies and rather a representative location), an attempt has been made to extrapolate them to the whole electricity sector and include in the planning process. Of course, it is a rather hypothetical exercise intended to give only a rough insight in what the consequences of external cost internalization might be. Two extreme scenarios of Croatian power system expansion are observed: one with unlimited and the other one with very limited availability of natural gas, those two spanning the expansion options range (4(. The question is how to meet the forecasted electricity demand at lowest possible cost, i.e. what kind of new units and in what dynamics should be built in the next 30 years. Candidate non(hydro power plants are coal, gas and nuclear facilities, with annualized production costs given in  REF _Ref450216288 \h  \* MERGEFORMAT Figure 5. Since the gas fired power plants are the cheapest, they are the first to enter the optimal capacity mix, so if gas availability is unconstrained the optimal expansion plan will constitute of gas fired units only ( REF _Ref450217149 \h  \* MERGEFORMAT Figure 6, fist bar on the left). If on the other hand only a small part (20% in the scenario gas-min) of the total capacity needs can be gas fuelled, the rest has to be met by coal and nuclear units (almost 40% each, as shown in the fourth bar from the left). That optimization result is based on traditional, i.e. private costs of electricity, which include investment cost, fuel cost, operation and maintenance costs and costs of unserved energy. Figure  SEQ Figure \* ARABIC 5 Annualized production costs with and without external costs added What happens if external costs are added to private costs? Since external costs are proportional to emissions, they should be added to variable component of the production costs, which is reflected through lifting up the right-hand side of the cost curve. Because only the air pollution damages were quantified here, fossil fired power plants are the only ones to experience increase in costs. If local external costs are added, following the values in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3, cost increase is almost negligible. The capacity structure in both scenarios remains practically unchanged with respect to the base case, except for the slight increase in hydro capacity. (Base case refers to private cost only). That can be seen comparing the first two bars, i.e. the fourth and fifth bar in  REF _Ref450217149 \h  \* MERGEFORMAT Figure 6. Figure  SEQ Figure \* ARABIC 6 Optimal capacity mixes and cumulative emissions in the analyzed scenarios However, if regional external costs are added, costs of coal units dramatically rise (at full load they get more than doubled), that having large consequences on the optimal capacity structure. The absolute advantage of gas units is also shaken even with unlimited natural gas supply, two nuclear units enter the optimal expansion plan. If natural gas is limited, as much as four nuclear units are added to the system (almost 70% of total capacity). Figure  SEQ Figure \* ARABIC 7 Emissions in the analyzed scenarios Emission curves for three gas-max cases and three gas-min cases are given in  REF _Ref450217149 \h  \* MERGEFORMAT Figure 6. The base case and the case with local external costs have the same emission curves, while the one with regional external costs included sits much lower. Optimal solution is much more affected by external costs if there is a limited quantity of natural gas, i.e. competition existing only between coal and nuclear facilities. Having the regional external costs included in the planning process leads once to four times lower emissions (that if natural gas is limited), and another time to only 30% lower emissions (that if natural gas is unconstrained). XI. CONCLUSION External costs of electricity represent the monetary value of the environmental damage caused by electricity generation. Evaluation of externalities, better say damages, using the impact pathway approach is the most comprehensive but also a very site-specific routine. Since this paper is one of the first attempts to evaluate electricity externalities in Croatian power system, the focus was put on priority impacts for Croatia. Those are health effects of air pollution caused by coal and gas fired facilities, which are candidates for construction in the following 30 years. Damages linked to coal power plants are much larger than those linked to gas fired facilities, since the latter are responsible only for NOx emission and nitrates. The largest share in the damage costs accounts for mortality effects. The highest damages are attributable to particulate matter, on local level directly while on the regional level in the form of sulfates and nitrates. Health damages highly depend on the number of people affected that is why local damages (within 50 km from the source) are much lower than on the European scale. When incorporated into electricity system expansion planning, the local external costs do not significantly influence the optimal capacity mix, but the regional external costs do so in a great deal. With regional external costs added, competitiveness of coal units gets largely reduced, so they lose battle with nuclear units. Even the absolute priority of gas units is disturbed and some room in the optimal capacity mix opens for nuclear power. It has to be stressed that external costs of coal power plants can be lowered by further reducing their emissions, i.e. by applying more efficient abatement technologies already available on the market. Of course, that would induce some additional direct costs. A particularly important question here is the selection of spatial boundaries within which the external costs should be internalized and imposed on the polluter. Numerous analyses proved it is due to pollutants nature necessary to capture impacts as fully as possible. However, it is very important to define geographical scope within which those impacts should be taken into account, since that can seriously influence decision making in the country of emissions origin. REFERENCES (1( ExternE - Externalities of Energy, EC EUR 16521 EN, DG XII, Brussels, 1995. (2( EcoSense, Version 2.0, IER, Stuttgart, 1997. (3( ExternE - Externalities of Energy, EC EUR 16523 EN, DG XII, Brussels, 1998. (4( D. Feretic, Z. Tomsic, T. Kovacevic, M. Bozicevic: Croatia MESPO Report, research study prepared for the IAEA Wienna, Faculty of electrical engineering and computing, Zagreb, 1999. UXLgS T j k { |          & ' = > ? @ ] ^ _ ` a tuvwbdkndȴȮȫH* j] j[mH  j]CJ j[CJ CJmHnH jCJUCJ jFUmH jK6UmH jU j}UmHmHnHjU jU hmH nH5?UVWXefgxyz) * + C D $$ & F $$UVWXefgxyz) * + C D        a zung 0                     ;   `            = >  bc   '       $ $$h$$x$ $>x$E$$T8\O B$$$$$$$$$   a f^_`opq!!$ & F E$$T8\O Bf^_`opq!!!!!!}%Y)Z)[)v)w)x).2M55ƿ鸱镎ztnhb\VP     C        /  0                     I  J  B              deghpq$$$$$$i(j(Y/Z/^/_/23M5h55555555555562636T6U6k6l66666666666666677%7(7=7@7A7B7a7p7s7~7777777ʹʹʹCJH*6CJCJmH CJH*CJ j]CJ j[CJ CJmHnH jCJUCJ jm j6 OJQJmH H*H*I!!!!!}%Y)Z)[)v)w)x).2M556677)7 $$ & F$  $ & F$ $  & Fx   & F  $ & F  & F $56677)737A7B7]7^7_7`7a7t7|777777777777ºxph`[SKC                                       (  2  J  Z    q )737A7B7]7^7_7`7a7t7|777| $ & F$  $ & F<$ E$$T8\  $$ & F$  77777777777777777t88 $$ & F$  $ & F$ E$$T8\ 7777777777788888!8"868<8N8X8Y8e8f8y8ƾ|tld_WOG             %  9  :  A  T  U  V  W  ^  p  w                 777777 8 8>8@8R8S8U8W8h8k8}8~88888888888888888888888999 9(9*9<9=9?9A9Z9]9o9p9r9t9v9999999999#:&:::::;;; ;;;D;G;};;==X?H*OJQJmH  OJQJmH  jmCJ6CJ jCJCJH*CJCJH*T777788888!8t $ & F$ E$$T8\  $$ & F$  $ & F$  !8"868<8N8X8Y8e8f8y88XE$$T8\  $$ & F$  $ & F$ E$$T8\  y888888888888888888889 9 9"9&989ƾ|tld_WOG 5  9  O  P  Z  m  n  ~                                   8888888888888888DD $ & F$  $$ & F$  $ & F$ E$$T8\ 88889 9 9"9&989B9XE$$T8\  $$ & F$  $ & F$ E$$T8\  89B9C9W9X9k9u9v9999999999999999#:;D;};ƾ|tld_YSMG   B  8  |  }                                          # B9C9W9X9k9u9v99X`J $ & F<$ E$$T8\  $$ & F$  $ & F$ E$$T8\ 999999999 $$ & F$  $ & F$ E$$T8\ $$ & F<$ 9999999#:p]K$ & Fex E$$T8\  $ & F$   & F$ E$$T8\ #:;D;};~;;;;;@@2@9@Y@|@}@PAuBvBwBBB $ & F   & F $ & Fxx $ & F  & Fe };~;;;;;@@2@9@Y@|@}@PAuBvBwBBBBDTEUEcExEyEEEEEE¼𘒍|vqke_ZT                     "   #          /      &  F  M  f  g            X?\?@@-@.@/@0@Z@[@}@OADDDDDDDDDDDDEEEETEEEEEHFRFVFWFbFcFjFkFFFFFFFFmGnGyGzGGG'H(H+H,HKüʶ jmH* jB*B*CJH*mH 6B*CJmH B*CJH*mH  B*CJmH  CJmHnH jCJUCJmHnHjNUH* jCLEHUj : UV jU OJQJmH H*OJQJmH :BBDTEUEcExEyEEEEEc:$$TFwpi<$$T4Fwpi$$$$$$  & F  $ & F  EEEEEEEEE FFFF#F)F/F0F?FCFGFHFRFh`:$$TFwpi$$$$$EEEEEEEE FFFF#F)F/F0F?FCFGFHFRFXF^FdFjFkFxF{FFFFztoic]WQ                            %   /  0   4   8   G  H   N   T   a  b   h   n                       RFXF^FdFjFkFxF{FFFFl$$R$$T4rws pli$$$ FFFFFFFFFFFFFFFFFFFFFQIKKKKeLNNNOſzrmhb\VR       { |  ~   &                                                         FFFFFFFFFFFFFFFFFFL\$$$$$$$$R$$T4rws pliFFFFQIKKKKeLNN}rpe  & Fx  $$l $ & F$   & F7   & F  & F R$$T4rws pli$$ KKKKKKKKKKKKKLLLLLLeL(N)NCNDNvNwNNNOOOOOOONQOQRQSQcQdQlQmQpQqQzQ{QQQQQQQQQQQQQQQQQQQTTTTTTj}UCJH* jcUmH jmH*565H* CJmHnH jCJUCJmH jOUmHmHnHjCOU jUFNNOOOO OQQQQTTWUW[q[r[v[{[$$$$$x $$ & Fx   & Fx   & F  $ & F  $ & F  & F OOOO OQQQQTTWUW[q[r[v[{[[[[[[[[[[[[[|vqic]WQ             #  $   ,   7  8  9   >   B   G   K  L   f   3 5  6           TTTTTTTTTUUUUWU,V-VWWXXXXXXXXXXXYYZZZZ[[[,[-[.[/[q[r[[[[[[[[[[\\%\>\K\N\i\j\\\\\\\\\\\\˻ǵǵǵǵǵ B*CJH* 6B*CJ B*CJH*B*CJCJ6CJH*jUH* CJmHnH jCJUCJ j~UmH jUmHnHG{[[[[[[[[[[[TiXd^^$$$$<$$T4F1A$P$$Tr1 }A$$$ [[[[[[[[[$$$$$R$$T4r1 }A$$$[[[[[[[[[[[[[[[[[\\\\\"\#\$\%\9\:\;\<\ſ}wqld^XR                                                                                [[[[[[[[[[[\\\\\"\#\$\d`|$$$$$$P$$Tr1 }A$\%\9\:\;\<\=\>\O\dQJ$$R$$T4r1 }A$$$$P$$Tr1 }A<\=\>\O\T\Y\_\f\g\k\p\u\{\\\\\\\\\\\\\\\\\\\ſysmhb\VP                            %  &   )   /   4   9   =  >   B   H   M   R   V  W   ^   d   i   n         O\T\Y\_\f\g\k\p\u\{\\\\\\\\\\d`$$P$$Tr1 }A$$$\\\\\\\\\\\\] ]]]]]T$$$P$$Tr1 }A$$$\\\\\]]]%]&]-].]A]R]S]`]c]d]r]u]z]{]]]]]]]]]],^/^^^^^ _ _ __ _````````````````mH CJH* jmCJ 56CJ CJmHnH jCJUCJ56CJH*CJH*B*CJOJQJ5CJB* B*CJH*B*CJOJQJ CJOJQJCJ 6B*CJ 56CJB*CJ B*CJH*9\\\] ]]]]]&]'](])]*]+]/]4]9]=]@]A]S]X]]]^]_]`]s]t]u]ysmgb\VP  I   J   ]  ^   _   `   e   j  |  }                                                     ]&]'](])]*]+]/]4]9]=]@]X$$R$$T4r1 }A$$$$ @]A]S]X]]]^]_]`]s]|T`M$$P$$Tr1 }A$$$$P$$Tr1 }As]t]u]v]w]x]|]]]]]`$$R$$T4r1 }A$$$ u]v]w]x]|]]]]]]]]]]]]]]]]]],^^ _ __ _!_``ſ}wqmic\UP<                                              -  .   1   7   <   A   E  F   G   H ]]]]]]]]]]]]]$$$$$$P$$Tr1 }A ]],^^ _ __ _!_````{wwtnn$$$$ $ & F   & F<   & F<   & Fx P$$Tr1 }A `````````````a aaaaa!a"a+a1a7a8a9ad9f:f;f}fſzuoje_YU                                                                         ``````````X4<$$Tl4F O<$$Tl4F O$$$ ``aa-b.bDbEbUbVb\b]b^b0c1cGcHcXcYc_c`cacddddee e e e e!e=e>eeeeeeeeeffggUjk k!k"kkkClDlZl[lklllsltlulLmMmcm̺̳̩̳̳jsUmH jUmH j-mH j]mH j[mHmH j j] j[jUjyUmHnHjU jUH*A``a aaaaa!a"a+a1a7a8aDHX|<$$Tl4F O$$$$$<$$Tl4F O 8a9ad9f:f;f}f~ffUj7o8o:o;oosss $$ & F$   & Fx $$l$$ & F$  $ & F   & F  & F }f~ffUj7o8o:o;oossssqs5u6u:u;u=u>uu/x0x1xAxBxCx|oIJKztnhb\V                     67  9:         cmdmtmum|m}m~m7o8o9o:o;oBoCoYoZo[o\ooodqeq{q|qqqqqqrrrrrrrrrssss s s#s$s%s&sqs6u7u8u9u;uu򤝖 jbUmH j~UmH jUmH j7UmH jUmHj$UmHjUmHCJmH CJmHnH jCJUCJmH  jmUmHmHnH jUmHmHjUmH8ssqs5u6u:u;u=u>uu/x0x1xAxBxCx|oIJ $$$Tl> $$ & F$ $$Tlower plants determined as main candidates for Croatian power system expansion till 2030. It is analyzed how the estimated external costs, when incorporated into total production costs, would affect the competitiveness of fossil-fired plants compared to other electricity generation options, i.e. how they influence the optimal expansion strategy of the Croatian power system. I. INTRODUCTION External costs of electricity are the costs imposed on society and the environment that are not accounted for by thKWXY܁݁ށ./0STU    e producers and consumers of electricity, i.e. that are not included in its market price. External costs should reflect the price of the environmental damage caused by electricity generation chain. They include damage to the natural and built environment, }DyK _Ref450186314&Dd!YB  S UAb:qt!)['%lnd:qt!)['%PNG  IHDRh^#gAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_IDATx_hZ'N@ )Z`JRQֵGA(j5JDH 8A )Bz3(bb.n3aڦCؐPyٝ}O*}+uhHk5 Q }u]tE׮=]?n Op$c=# {{OՃݠd"!>zoWWו^Q.JWooWɗ?( )M& /@@W=]_ Ua՞^*"K+|!BIt}-K=Q %7(T+G, K?$g lÅZ(_o2rX*t$Re`WW%X«_|-QRA! yle(ZJI%Ri!HAunfİXAQ<>:4\|fmqqbqX H4 )&g G!\_ 5,FO`YN'P$H(Kz}}KpKCr%3gyʗJ4Ny\\\:&lN\\r: WȟLCHрh |y#5/J|:],m4tj0BL2BijnH"SihIE$¶/qK,1VjToWsIjs;r>X״yGRV.K|Uv }ՅD3LiccрjqsDXV׊-VWWiX4(,m21hZ9,K &/p Pvxkk#ϯnlT\ējmcmZfZ)H%r:af6R& _ |IevKOEp<eյFcV-.kk[$4gRRcrLMZȚt:'/9M:ӧm&(ac#bqxkZ.k'>*л.e}iJ,; >l W[ZTol=ndĖ5 Id{\N .B}[z鳧XColAlxX[pk[[Oj>ZMVGB(1'qeoH %e- ={ B}QK2| EkzTp8d6`qL}=5dyvcWRX/rfcsʹRn4Z O:8ˤ8wge< Kէ/5zi@#R6Y.&jVjGJ^p!jūS9 dU +߁?NN[-mJx4LjmZ*Iu8XP߁j R6g1V:==ze7V7 ^_HISW뵵r6TjZY甓 w*k eik2j1yJNH{fg=Ct&MlZAЧp\k0)͸gB^V20J"NYm3뚞va_–T$B=I^ZRe20F ̣#dR.3xpBd6jlvN;I\( 2R..'2Tf+d‘JWPJe\6N@ɇ-RҀBG߽k',MKfr+FD2bd,EX73Z(#Q+"`_bxCML56s%.D$rbt[JrEp&\( B|鐝 s_]CkGhpNmV?\J&qgX&łnl0 `ZXZj1W]'I@P6tZ5FنC7ڡ/9"j%I\S~Eb\aQTup(wQ{CL:/lf=cqNOB\,lr)p:pa0 JzeQѯ͝wGA 6i6h嚝L .#Q|3HU: Gb :e1!@ wmӶZqbz Eb8?@ .&bKK9֍zq\YS(\xzل"DXttJ+8|~xqh8L%+ O8G z$TVUr>w0vGEZ't6뙶F'RNHs4%ST*a)̰H"Uh .! Bbgs߽kEZڿ<bBR&LD  !d(¨k&嶻Ao~L)a[a>?Vv`--%a?] CxJe%BR A$j&L/(1A|t|ttoZmg矶9,<[\r`š; ^0R$) hz%hnr'N;)9YԴgVVV+9 \e P/S˹Ҽ76V{Yqz.d Œ\&Z,Wḣy 9U;z1t,JE2L&8i_*?y_{{Ouzn.;͌+A b1p'cbgfCem/n;{誣Cوldd@z Qa $ Rny#uSP4EK^v~>zYL#d%-ͻ޾{Oo{~Đ'`ׯ dC7ZL:ܜgriI'KK>?I&RH$#igYuyg\^vEH=q[hk~W^ؘL*U(H:cpƆTd6X:dG"q k;Sv pf@Km~gr2222vsL6&BS.Z!M>6(KRXO:5ウKaXz.°A{Hڊ(ԔXL:qks nh&cv)J]V˴n;SS|: O]tn}+@s&R1bNLN'^dNl,ae)sr^2]y[/\s^E|G*90260'lV+\! ѝS64e]<'/FÎG{o^y1$QP:L,OQ}1ŢC>\y[ bz\P" TA{y h#mE|ݠHPRJDORU T"2Ri1,f =a $(80 H$xzPUsS/$<-8DP(RJ ۄLx\a* üAiCl0DA*J%mo&tHyjG&5EZ-&LFvŖV yX?HuY!($AP ;Qb@E(J%(xj-aZM$,5+$.%Y(臝&u܅G/0P0x5$ (<ԔRё5nb y& GnW{|0_.ΫfࠝfAZR-"BT* 4:= vA6 OcI%5(jipJJEMѩ No sG@4qOOM:ɬúwo&2^~C`ww("kRw\,Ptz=!iZE[쮳>G.~8#:~DE*KMB!jt-Eӷh;:'fz͙><8!qD _7<1`Tz-ޠӏԝwQ9a6[ &y8\;''j=Q(D=5 =UƨL,3I,*wѰwxΧ(r(>:|6( XsA'ppp;w-Ҧ F Ƃ(})O(‰kPx0r z4<aLwR4=0 $2a<}]WutD@HR$%"QF{1alPuK.WYڱ , K yJt8BY;"FǗM'j~ eb2:=Fry1WY6GbCr]OhD!go ",]chirn'[82sЃ8:i}7cRF) @iX"3wP܀9C8|Ge^Ԏ]G1@#s ?"z`8x/#ρqhh'ٽÖto^+jIdkU,IodO9PƊj<w{sAc;uۊ۞QdtBRv%g4 "HP?1Hb) ξk:ޡ͛c )9p ~u@mYFd4eq,.{쀾}tGg$#ccRT&zj?|cjKbxMF yC]<κ=[`׿>#o$ ar #֪oOVCq#=+R!tLA翵lh~5/0qcD?JӒ\h:^zJ"039ic : .Q5Fo &VP2 b %pSaY^68{yK>ֻD!䆤]>r,RC$v'4r5-<'M8%}|#?^çĨ1ڧJ_-ٕڈY$4h2''VMAaTO|Nֻ޾^ih8l6JAѝ_4Cäb23N.[ &P(>Yu:.(DNQj!uY9u|wB;FFJ.DžLB4h44Z-3c(ptL;E7A?9i^t/t9 )%4[A~6 Z==n256r  I@ԀH,BGݐ=[R٨R~⏮?z b֐=N>}t.rhK]\eiRy$0tGZK(œ_v¶ zyĨ$SE*\4zJ; (@z:huvA;-#Y $5<::zC:S+-`|O|i EIXGd6I[ !t4Aag<$֜)2_B^KE<I σMRh ZxViO DOv}׻V@DDA>CDLQ(EEJ"OvioIENDB`Dd^f'\ T  0Vh XAbb~8Pmysnb~8PmysPNG  IHDR^^gAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_YIDATx] d2/ H>%|ם`[U 3ga`,_ρ)/gA<m鹈Ssg?x[PE_ R:Mds& arom%f:bF3ȂEyi|~~HOC=cJ_ ޗ\^ E8"i}Vz9PdZ_ێIoo ܫ+t{KO.>o 5H3xՎ}r>}}ܗ/aPK]b_ӿƁxpk`4E^ r[:gf$~g'R/O=?۽|e>_ϫB`/Z kNSBQHR|pѨA6"B5Ï]Noz;bZ|_mv4yV]iUZ[; Tyj!:al8s>HL.rGo87T$e8vM Yw4Pphn"/ŧJUYMm`88\o(Uz6972&j&3D8bWB*(E@O򭏊V*/Y8]x:oڽ2A땖@6]zZ iNh^f|]k=E3";/ 0fm뱗Tk8k6GcyCZ5"@B 䛂H`*MdIN&Nf+֑ρst Yu/1ѧܱ [t\sԈO`F"Xhj@mY R/N$&pT  b Sf]LE+l?K,C]~n}=G3I[EAKEBqϱdp$L' IIi$3q](.͕[ *'L&ki'iP0I؋K:'x;+kZWHw"ub:@W6 ,Δu廿Ŕ)sJGWt(i  `A> ${-J-?鞀 F@5$E":ZG C#uNh1-3J(zbw\#ȯI|u0.[c,R!<(ڦ+F:LwHBbI8^Bk;bՈACWagAsbw9N\ƌMCɒ@j!<}M<}SM`L7| ]y|߭ bMo B_Q+6m+='m#%+D]eAW+乽4ˮd09!9lߎaW` ǻ,kj'x K:n 2:ýTէ<χlӰ걐Θ 歴|EA*{`{m*eT;=lRK0/mR*뭠E9@ߏ6)rPn)!Gx/20]\yg+~{@7KvuT,HfUU($!U-{0Ҹ&C2 & G3j"Av7| N.6'Yz+I5jns+lr/gjwΖL_+ ;ps9 wv3-*ROߣD06Od뀤D%˄p{ KLIg"N ` .%pg7Q׏Q酛[{eK`ka,ܳ @{Wu49C2~I{ 9MF<"@S-4&/[&)jx.pX<ӶPmހX^1H5,a۴ШWug8Typ8SW9fs˪"ѳ' kr Pu/  ^%WQVfW I;)oΓ4q_Bˇ^"ĔkAfa?Y"]x!+N٭Qj !h23@kCv/oA53w.ah פR.bH ~c=ʳUWY2 /㪶1yHR;JTb$ NR\y3boLw_n*=ӑ#0,B;Bem U ^ hׇYquOno\^晲N8lh_YU._B1뼯^;ahy!Zf>kcU~! n%Nؚ&Ǡ+Cޢp e펗1VDbc:argTU߃ֹ[;jMʉL1OGm%5fr˝#/q"Ϛtjnˑ)Df~z5Ȋ{{j\Oz}Xd^\fiA)E|W a{h_ʧOXgrD(?o% x~^c{t@L{Hʴ%E3rȿkxPׯD4^lMrVHM3Cj?x}d8Io~g_\m{C<./y Cx)x*  ZjH6B q5 --6$`TJ͕F@o7jh|!,^ 8GZk2fVGriŠ!y}t=9^G{*afK'Ld9S|j]?_\&tHњT"Ehӹ[5b#,xE>N×ƖoV]AQzXynQrz^^MwS \Y! ꏫO'tC$yeZepniHW^3O'wh3_i>F% `SG[jK7){aYsS 6G?Q&MYzun3W=J%ws.6n#d+'4I[5G?zb>4&v-WPQkr.``x Bӛ\tkT -fCnYQ( Ix~ V#~96}Z1/!mB Pʙ/>CmSj0*9˜y"p31A_ӪfmKt(p׋8u'eXǗϲ/ }xc(r{9Z.+B¦Brk%C񗅿.&7 ?#NA`tky207 0767˳A|\);"SvJВw_ ardeƾ[f-@ &hy"Kuܫ:M]Y`_hՕp;FMF m8/x%V6rGkA*dCu^:;|#c*j%3YD'F_IF[5|9'Fk5ҖRצ\nd@jM`]izPO>h zU2i!۪75Cj0R[ W1q j+^jH?Q?9NV#<1`+!p+m^h>b,!I• J<ݡ ^/b47S%{@hK &A09TMF'0EpiJT7w% Hg~/G P "iUҵCM&Y*r.u {k $:IFh cJ"NfJaBɢ _뉱IR0ۥ>*ݬF+4U*_NQ*{U>_Po'ǩ8-U}LURgrX>yfd}.ͺN$&ȺXTLlxFIz1>>Wәc @67r鹹FɣwB6=Ȓl'jd@gakAiAB?NAxѫ3ۙ2C?Ls9 3S rM+k8P"c$:• e*B*G >jW`DLmT㻚8QGU1'5z3Ɛ_lI8zꨱO#Hg_F48}kWã9k1-;{=X'(ktYd!9NGt:y Ը 2al- 7 GxmE=]<+Wӟ 9r)A.Sx 0D3*&p߉SS9N7CtCvj yT=!¹hr_ E(Tһ+J4q4"+])vz|)} ?+.gu_4Ϲ"szZNmuo]H_c\ܗ3]S_)r=q@}ڨzwc1855렂A6W }aQ_"ĸ{"[K3w%T%N}CZK_ި`VA ٨E65Z|5FwQ>h9ʙSy%{˜DW!a(A."n'"!])v*Wb].|[z;'>Kvw~_,p>/W?̼~I }4g~.`.uN#Wܿ8L;rB pRKfg93q5r2aㄳOs賜?HOq 9ݜ'<ў[ 7&2:363o3z;oD5 NOws4vۉc:NNrz{O|?Ig21#y=J6x5v:t:;|ƗbcV~FRo[@> c99F׎Z|w59$rXcߚN+Ze |~Fmğ1l=2[8%## I>%MLK)PnS\KWgqv`);و;rd#(R#HXFIFg~^T!1:J }\:uz0ƒOE6ZVrF1#>Ú5X{'dɌOuLSyBqMmCron3tr:J?YІlf_ϸ&3[-t[MsK_b'l0o&z`= Z'?rº)чaZw9촰v,tU@%jmΉfNw810bzȩэN>DJ1|m:M;T@Db=^s2݃=<愐lC, FL?c/;QWj9ǐl//0Q00!-rGG'ؿ8_?3!? 8NܷY˷M漅8 Ƈ\5Eu~')?y:V?ψSg?NԈ:FX#Q_9UF :#S:s'bYD3ǰ.xyZ| ۨ^Ph-qtq4KGkVks3E\b$+`K"bg"p'lz5ZPAJ+>cDn-æ [1N w\V>L wlcǜ;%ڈoX3s_؂ Nb:Z6s}37cwB6 'La?:!gDrN?:PV%Պm+LlgP8a]|~c!MOfc3S Իa 3B9F c5UB'#32.9&3אjX*?k`y+>2t˰_ℐ 7J{cd>'ak儱 n|7~pjq|tjtS۝2d#<]|nw%ND%~̜'9%z/! Gy1_C={Yr"U%#CDd&(<  C AbhLYؠ DFnhLYؠ PNG  IHDRAKgAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_ IDATxK `t39{*7`6FR0k[qDŽ =  Įi`pIͅ!E\BҦpC0~* /{.ojBP]&EP5Xzc]AXm%2~,, xɠs+ 3g2m}=c<T1<乩B"@ , XH5CM{%: J!G ])HuU-@6/M&)BYPKID99AR oMUD" Š~yh6";)։~/K9,NKGRK@htXDGFIENDB`DdB  S A? 2UpUb L`!UpUb  (`\xS=KArAHR{`QlQI'X#W[k;1[ys+zAht"& +0E1+E&;=^ *@B"AZ@E4}W2IJkW4 \qAhqD1\@[I H+I)such as effects of air pollution on health, buildings, crops, forests and global warming; occupational disease and accidents; and reduced amenity from visual intrusion of plant or emissions of noise. Electricity generation chain embraces activities such as construction of new power plant, fuel extraction, fuel transport and processing, power generation, waste disposal and electricity transmission. The largest external costs within that cycle are those attributable to the power generation itself, i.e. at the power plant location, and thus are given highest priority. II. METHOD DESCRIPTION Impact assessment and valuation are performed using the 'damage function' or 'impact pathway' approach, which relates to a sequence of links between the burden and its impact. This approach assesses impacts in a logical and transparent manner, going stepwise as shown in  REF _Ref450186314 \h  \* MERGEFORMAT Figure 1. 1. Emission quantification2. Atmospheric transport and dispersion3. Impact estimation (dose-response)4. Damage valuation (external costs)Figure  SEQ Figure \* ARABIC 1 Impact pathway methodology, (1( The impact pathway methodology consists of the following steps: (i) quantification of emissions, (ii) calculation of the associated ambient concentration increase by means of atmospheric dispersion and transport models, (iii) estimation of physical impacts using various exposure-response functions, and (iv) finally monetary evaluation of damages. In this analysis, the EcoSense model was used to assess damage costs caused by emissions from fossil-fired power plants in Croatia. It has to be stressed that environmental damage does not necessarily constitute in its entirety an external effect, so external cost might be different from the calculated damage cost. Impact pathway method requires a detailed description of the reference environment, which in this case includes meteorological conditions affecting dispersion and chemistry of atmospheric pollutants, functions linking exposure to a particulary/Cxȵ|O3u5 ?+OmJ78.j /z wR6իY8١cD*o=VZ6Jr!l_ǵ1,9'nx_~K[7'GcN٤Y*EV{˻q. ~>wuij8v9. $f@# vUC'ڱyS9}DyK _Ref450279940}DyK _Ref450368150_Dd$Q <  C A"!q*zX1hu$aP@=!q*zX1hu$ay[>qx] pV>?P-cT@icx@"U"AKRD P0ja0T CLVQ 6>Ukj uZzs{ror,{v\bpn:bx$GN6@)}\6 .x@0G s0d`D GJ-IwgdxRzpʿ ZO̸-t!Wb7i|9t3Qِئ1͸ O.0b؀ Y`LiB;2i-%,+|}1P;k°C/NG>3ߨxڞ%]h2N_73 > > ]iSځM\e:\?z2*2e۠"Sel ^a W 51xk ^g: o0x -ۦc6ڂ%70cϏ#W;o亜 0xK > > Z֓.#E/2x ^a W 51xk ^g: o0x dpt=fnj'`\ n;C|NH~4'}"'2~E Av睊!\}n0a*s t=0]*.‹`_)˔`tbCx$XX\31T(.OV\W*+«&[a}1 qe~)+-| ^ f1Ɇ# _r2g[WDXp^h'.7bh#,lK.@>'yͶdsƓ%QL}ll9&?Nq3I1<6e+6VŸG/z,eSNFnUF/粤2";Sa:!|?[VuLGXznTAljT!S<;!kvj7aW'Sy!^pmQTY ~Pq^lJ^lU/+MuQ~@L KlSS K0T)[ίŖa1r;Pބ*>O:mO|Ƌʟ_ CЧsNٞ~?ѷ|OcD~lԇ0eLe3cHVX9Ч\Q\oS氶J/bx ze+6U ߁-vsd*\sП|Nm>߯LUuN?m CMeKЄ!lEd{| џ }N';/D/D.;F eF0-6+Mu5>Ce+|R.KaS*-B/gM.8 _Cѧs}>_|.t<1mG۬|/k#|- :DZh}Xcm3D)ok` [&Ka; ߦllW V#|'ݪ,, o"Ҡl6UƄ.~Les3^VuO ?OT|%7碟7,jka&t=#sz6hZ#>P k:֍Þicm#VmE6M2ڊ# 6h+imVmY\"ڮcm h[n4ڪ"&Vm[BcNmcmwןptkv/1`=~XЖ7n7_m= n(ڶ'4k{hgYF۶hvHAk>d7}\6^y_Ԗ7f c~h1cpc=Z[ύC%k&{~nuwsF0/S<^ cJx7ՙ}(a(1e\?GIGSSy@Jٿ;Q[/޼RSJs.%Y2L;*q;kQ5o/v{RJs%bNJ\o+^\[4SyK:/.SDI, Sz'K;kQ6CY LY 17yz?/ b<”;`#|k"A=w Ɣ58Ɣxo$]cПb<26 urDHḀx߈)qS~')W`<|k4Q9럢oŔ{/[lji_)W o'JgJ6Ly1~(* ǔ^Ϸf%\ݘݘˋ֕ǯj5~5`;8J5`>/[{u3nW!c{^<·>U!w5kĔ,S>15(~j|S,|žu(͟g&LV _zqo-xۏQZk>R8Qc$JIGc#Y:E9uN2:# 9,isY1Y\"b:c ʈ$, 3{a#Wc}1I{dh=2#?B:idL餽3g;sX&sct>:5:k#s |1Ogκ|u>otnsY1Xswtco Ith<}:zP:bG\,ib&y

js ~qbUxwpuk!2A;87yO Hw}L0> 70,7Ŕͅ(|#$9s |]SgiC g瘻XKkf8`ΞKǜ8W27;2wMҼ-x2oIyʼ3xJwX ޹̻(yZ.eޕ{ 'og5&۲3Il? ܳ'\.4պ}w#h&l'ў Yhkg’_ }wT"w1݀|w9)y9PZǝ0}N;s,킰);.,3d@=m4?c> SƲr(Ak1[8킞uoH;]ŸE9Sy>pGk}"p/Fhޝ>?1 |܈%7G{m.JCܚZa*K77 Muvd?}&#eRy”94 S{ֽD,W#=P{!$oKe-\0 Tze Pv\w֑.jG/_*iGowP;紎E5po*Un/l h/KQR(r"ͧ|:T^miOcrI)r~+k3!ӥ=~#^vV[є.}prNC ].+@k NcR…Opz pz>[K_'ʀmZS~W*|)) .~*)o?M/P8aR>Qi|y '_~|)<;>~Opꃦ/|3 +|[fpOo/S~_/O*OH>*\4=kx=QM?&O/;&D}'jvn"M64Q+̕2O ~/k]G=96b\_?\?NWmȹV0Ir?.O洞\& >igqo4_j_uL~/ |<ke@kw?Va4%z癃̲ hLy/6Q?hЅ3*4NIbнZC).bRFT_8oׯ-i&ZVֹ&@$8'u)}_"N!DM)M*I#ÿV=p'Ã[s>p{]ܞ߰kwZ3E{v_'ձ;2H0G nl۞Lך&=,Z=m zDdrH  c $U A"n^U$z2r8cc@=n^U$z2r8zo!25)x] Uŕ>YDM[ub3ƘL&7ܢNel_}ihYM@Aeh(UW}y{wH/sN[uNݺNȯA:”1HvL<]T6?")"-%r!59ւR ӐZ!-0ie)9]$ϵ_A:1~hʍaxŚ)e tpauQw6QǏe0ǭHF: (Q"T|\VF"m (WZTWiyaSS:([ۚMYA;oO']9T7TjIjSxH?߂4+R~`Hqog!HdA'RS"oSP7A&R")Y sL((ϱueX2;%7l4|Χ|C!6/l6Q,<3;J2H}-._Cz-SC)B H[=~4@Oygfv_r@_A)i뻁3_c$3Nꔿ^BG?YE~[t4xxT+K6\?l5fKhJ%%|N]W;uUMWV8?ۦcl^H., B(k8 ?v"}5]EYpC@tq67x#Tt}URM5بЏ5UE_ U6} k*(O@ʦ?6}W@OR9Wrz7I6Dǽ3ئůi6EpMטqlгAGpMW |LIv P][\ve}} 1ok m#D7\&"o<'[Mp2A g(0': ʆӾ}Ej'B;;vNLm,CzO([K{O2B-\8ЌG;g 1z~'l2&=e,:֊sK*GTjW)ț~2*]~;MbOr:lcخi3+_k:M prco1ֹHr -B<Ч3Fz9A}+Yr~U?Xn3:nBz+I1k$svۍvB&xICk6?ErcI,5rЀD:Ḿ<W;987c17z>:dyhl.1>L2v(eДRsԝ1J\hl&$|8wʵc1CS|;jyMcAy|ȠiiizG|QI6QeD9np-1C2qpiKjD+v4 ob0~/Ù8ӂd1iy\c}c6Qn8UZgd\p5ȭFB A!c$۸^qdrp+Q_-4᱗7",lr#EhVm/h;A=O9vs/ZKZ^p!}=)'Ocu7I̓|ͧihaOptʏu:UyJͅɅ`b|ucp,6oKg f0.8xU< rK]`OU;GBc|klXH?X^%/o#y:pPjhVD7k%㗷ێ-H)(']9fzr'l;@.5_C<$\ԏ}d*BiZ"' }L!{|/>YW< ͳ|Xg@srE/,4ilՓ^qsd֟eOàvRڎg0.V9N.?8*me%Wr-2R3BɅCoGO2>a'HOOg ğv5{Cc$oʘ 9=!h' \bc`s݁zb Kz?+ߑu{9rxЌF{(a!ܥNa=sx[F ^=SuSqbIN|r'qR37me<%Bb*hfwiDg}Ƙ}Z}ZȋQbkDj^& rGZXE9vs_1кVr~_|q/k+h7߱n{)8 JI!@.B41rs/hzÏt#醹 =\ZiWgf6vIzoy 7ufH9i;8q]4ХNn[x-.p/ '\br\J홓4xa\=0W_OGur>P<?;"|՛Tux cp3v'3e$p/ur\Lk<+]S;=Y~p̌Te:%G[ssaR $?<:pPjh^?I{Ƭsہ ('nZ{jk>D}A[^qr{M9:ȯȧG.BrO{7 +bawh_w |Su|p KK5#f6>d$W=ӒY}?4O}}}^K,b bK.Kdnf˓^{M!^|/@C9_x3lrE qbk*SRX/½kg;c q89ApF\bq˱B?=l%=^_VH?C5H/;9w Q<Ùn Փ/[0V; zY'Ξyʞ㘭*5r#ceoJ h /;{kRhJq_?|Y8 ۛ6[@cxIQp#3 q2T1F8/.ur\gd`R%=^F>X/#݂Hk/\ U+7"Ƹ'WJ2w= bxImsUK-uopr{#܋ؤu/-f{)0~3uo{=vozw~.ԷmIBrohG}{@\Yƃ}CM=C<)QS#rEA )t 1s⛍#Y=IM }wh@;zY QGK,bP}̪=ޖޛ3j~?~=H/\ U_NoLà/ĩ漢-OT<^1E ]ދмPW1RR8j-1NjٌŏqbYMB9wIWpʑK,bP]ҕj͖^R/l+UPdħȭtier`i{-S / Wc߷X E:mbxA(NNݼ^|W"ءvߛȭC"۝Dvܩr +(9Y:O2MuջpE;~3|KCs7|]%1[Q;m?l'}s1^qO11hC; iC{J??2K,bt^.CZ04y/mS}Rیyː^sr\tv pvwϝV8A/ܐHm#4xlغνmf' >1tO#XĽ\B<l1[BcxI';jغd+Fm@sr\(~\༈u#A9_^٘2KzLF%ۑ"iy 3 NV Eٚ2KY'z3|^tI< wH{79v@Io;zN5h6D ۲ɅoµTȾN6GKIo,f*&*M*M** * *f*F*&U6#yy=}^-xzÕRz#HG+=FJS%+=AJORe'+=EJ_Szү+ӕ9?zd[#Xuf p]49VAj+ZǪ,uϻr7os#u.:`Yw笃sRs^ a g?VokWDž Q]:~ ޟҿta긨:~uܔ]9uW%@~y'x6L{woS>T?5KiJΉ*SZtJ*]t%Jk.ULr+ԿJJ(}EZ딮o?f_]s! 9gq܋ W܉9}uZf*7-6Uޮ9m7~D~Sϔ~ &J*-RZJ[(m0+mG*=JikG+=FJS%+=6ٮy>gj_ Lg)=[7~+b߿JUVyJ|(Pi;)X%JMw"W)˔^ߕ^@hh^1qp\eGU5׊sd_z7*IJ+EJoSz;FJRzQz*WiN}JWvRYCJV2|($z{)IO)51q}g>=wGC?ΖQ֘G&]e~y~hh\q~3E ǕW`1kzЙ)lv8t-x̿UKtNKym ׋_ ?Mu=9GE/{NwmܝĭȿC: ݦ.qc>K|al#|,(fz5 H}"O??Ҷj[ڶʛo(bCKŲșL*#_SH<}DyK _Ref450112363iDdH  c $5  A"]%\Z~@=]%\jޯ8")ox] p^q+2&<@q0(!8Ig„$06>&BkH iM l%۲dIeٲlYo&ml0!ݳuW[ ׳g={={Ͻ:D"M#_Dv]peE|DFI"IB{ۀ%Χ'J+;Ý3V,Ru8^)'QQ O-7D:5 eZWN/ȓsggP/EgTnҼxKB/܉% (- 1mWɕRr_Yu/:HmMyN( o3^y jMv}Չ9ԟ&%W?pG~#?HԿ/Q?їM^?'_=s|΅92D?KB~h9l^7l.i]=RY^g}}?~g~e2x6&wf:4'xG?k=Oz㳭;Is7{Mc([} #00! u +.&emr, un|G/oE^TWi?i4#w]f 9J`(m4 ڳKZ[$i[% ;뀾6pZl? IBN g(薹1ݻs%ġyZ9`/t/`7j/|u`oB+N:VZ=`Pz,<c~?EzϰhR-QLa)Q4i7Ojb:Gk㺳Dtt| 08<>_ZwQT z ֭/i|K>פ?$aqlJ!l}I > uZFC >Y1F^7-74lֆjmu>9HΉ4j/6tvN{CN@tv3ߧO2Q^y8<>:ߕO]אnQ/'tv1c7"Zz'"51SޙQe2 zON:U{/¾yDA!Q}LAJȵ~>5Xq18׺5؜IuH't% ڛO?s"Mz}`o8끓Q=vt`+tv{59p'ݯN OJ!ݿ|W"a9| {DsRh=c:Otިt7tv: Ѝr)`˾|0藶F/85/<:>2luF [b 5z= Kur_|r+(tryؽKy)~`CpvIaA >|u`oeA%o|&7|1; XuIa('Ds V^| 1#41/l{NA?"ZyͽP2/lzQ f9 zόVtZ, I>#Wo)X>?h9C 9z<):9OI.Au&|9R+栄`zwʙ'Xhv<⾝gkis*J黾P1~T?ܞC#ԃC ^ljT2'X JM^/5ڞNxueQR7i1y_{SDzW(OӽRJa XYXƭy\?ޤ.`npHkb蘴gm. (uWFk@ƳY3-1'zwkUh-5x6kmLaHTY:ke4 rRlJ%Gk[@7Lp'Kɬ}<{磰ɨQqURV῍0J('#b4c"woOt h5 Ti(tZLȱ,mOhK}ݾ_Y'3zRcXpVy&g3n% }o.@hy} {xtiyKxܨGGAo3zc:m'$P30 pf f=bMoҏVeCZpZJ[llmtv[H!gl<+p_No;}l<:w[ϪYa<7b{.}J t{i6~s'?xŤ%$'~&o߯|@ y(!\N=IRYwr=g֦IR^`֔j?M 9j504pċj'g )(5yS~:ə6LE)eQT7iʙ졬=T]B?ؽݧT?vwFxb[噜ftre,'g0 Exg,_f)>$i&yR_~OU۾-(lbPX,[bBWgKo{B[j1yy7NmW-֢iM:`f۴{T36C_8Ha71GT{g'8="Ha7{`w=SywT^}X[d(;uWE{iyϽ&>%6Rx{WYR?R:l{:^nGG}:~YgU)u YgݭtYkw)u]JgoJs͒U^ߪ<;x, 7sرJm?I2WޏL0&˟ȟ?؏|oKǿH7^1wɿ 3 c|?.ȗ,U)'@%/療<7^1i?eܨH_˗T$H7^1?A3Eȿ$:%ǐgH؏sxI\]%GL^nC"?1e" ^ >noC1ϙrHЕtm~k~tϗO^c5>Q]ia'm{vnZ{^ՑF?ӧ'}=3+'Ǽ-'m}7 >x+y~é7S ~Um*se{Lcwy~}W1%~cX2=-/ȗKrPRr! vvz)2K8ˎҷ}a2|.<,gbg>~^Ǿ!ùų+yU1y66ovw~1̝O>oi{^6b0j]?P/)g_i~nu{_k_bk gpL7xmwɓޯk./{\-ܩ7NZrs{,y!<Qz 2;96 c3[* ?h?po騄`Nಸ(c%xOD*tt8UN@!Mm>}%O]Be] SsIG*L}1>,?xN鯁ĚaEs$A6]}MI:+mk@_L'$ʳt$aLE_{}DyK _Ref450144800}DyK _Ref450354590}DyK _Ref450144800}DyK _Ref450144800}DyK _Ref450216288}DyK _Ref450217149:DdB   S *A " zj|N veQ @=x zj|N veQ:X>1F x[ tU=CT>~%VՊL"(DEXPjg |c (A>"(V[ZкX֢+gM{)63>7".@!0] pK#ʹc!Lt[z"j7= TM0VJ4%q$2s},T'Cg㝚ix-NTR{.n64 }(؇>SCUmDmoB3kum\ϵK[G#)N19uΫuJSB^Gm(]\]./D"v}0{s8~Xeq;_e "~oٷz%}g/e}g{xгzTzs(o\}53ҳG[5n]{ԸuQֵq[W0Gz۶GwR'bҌ:(r樜1?9&w~=Er끍5tik.^z^`,0xA}h=v(UP_V4ԅ6\ E V;,@O7&"gR mRz Rev%' hWnB k?v~HVx .ڽ+'Pk_l~A ZDH3=P{.4w"mhU=u'tjsi7۩3n4ކvP7S Tn w=HwWWHUQ-jFFŪUW6)5Dk?ё(XSh=ok즠m;z:-B,>pPfF~w6{{wDۉv6ڮ)ڮ`0؉P]{Oцہr; V{/ ->pPflG~{>}цۊ2cB@` 0X|-jy R|6؂P ц{x7127F e&7ǀ7 JF8Xi=0^|֣x7Bm)|híCv (m?4HZKy%>pXP;XCp/XPAJtAu!ц[2cB h=5sXJ`T eFV@Z=5v>g.| '侤2c>}Ih"=I|̘P HOm9=5:>V3HmgPfF~v=HmYXg5P{ 4ʌ =4KGn]A?^9Jц+G1GLCzhMCQ|yFsZhMkpS5|zhBSц{ e䧄,hMޥ dg I U~&$ʌ2NLBE|zJq?> \) Dw6Dj{`|hM@1X5YxƁOj`- >pcQfC~\+RcG{ϒ{塢}a1ȏ á)AhÍ*7ՎQ 8ʌKR׊{G&{)GǑ>&~WlGINݹ{"e^!+9Ʈf05]ar]}*fȟ.uN(4k6-?=5}M7vνpC:1 {bzrYvg˒n^;_-s\/L~ߎ9[6 Rǜ17\lx1-RDq-yD _&8_\/OMD!Ŀ"M]3e%~QDM|iD3:F Ey:7:"Vt1Ve6_#[[&񯈉_)1-1[ FLj֖I㱈֖M/[_g%lKԠsLFՋ5^xO{@Oi(v|R1}y¢FYmú#?oD~noT i*[q]r{|/PjP|wXruCM (?:mΜ}'o N=z/E*Eҹq\ߖT{#y7cu;R9;8{3E|$Ëgo~Ζgryq݉}|O@0 ((j6oSjūtlƷ-/ Z΀ljjN2h4ծY*])ZLUЎ Uj!" &xr3|< ^PDӚ뷫<8ͫfe6T͋Q0n{ ~q˶ӫiDJ@:-ߒٓeڶ̮uYߴyᠴg7r{)[[g[Aߏ~Z?ۏ\Q'u\uy2G._\%߳s}7Rj]離Kozm'pfگOA9Wk$?Oo'QdϏq?VVW |ߝCݿs_k8AbY{M wFHOMM,}DyK _Ref450144800}DyK _Ref450217149DdB   S 5A  "kf+QL&(@=kf+QL&(p^[;(;x\}TXT0~W0p<#*AN=#H {ȁ|hLhŘXeP2j+0&jJE1&s"1={wvvaUWLyyffH"m1!YG P=/X*Dx< )4 /_QȏUfDg|Ti S̽tST"ؐO)i]85m!qd^Rd8o:CB1NTLQX%1y/KEF1vȿH -+;t`;yfh#ۤȧ9zG^ky#;x0&\vg3u _ߤʓ7_n^ט&RIO=CW8 \ktR37b,KIL'm^}J=|RI!wbɋNڼƧ*ObSg1"l(c|R!6uKi} _o@$6nCiJ~>Xo ;'o Zc}ocTN%7C?BoE0/}ԕ'k'Nn=z<)0,¸N4ٮb2BWDŽDIֶx k+^ڋ>MLc72?¶:^OtSϐgc #=q AMr1\gq vLlbg{Ķ؋nK^zK}3i7~'{X򢥄}g cƣ c oWI;<_؟߰x.Scc>={u<ϫtq;7c?cc ccc ƾ c?>G0+M|G{u#Fq.c (GuXYAq*d:7`Z>בu4G^y#uq^~u=-9KRG#ԑq'LI59&Gّo.C;Bw!^ck$ܟW]|vԊ$dY,6@<>|㗢}*^QqKLťRǥ߮oK,Xz~ĶRێs-Hs{;o2?;HcM8gDXyӁ͋~w(6wX 0ؼ@z*DHPߏ_-l^3\O5' 0ؼ7y*fDO 8\XiyJ LHk۔V8DŔO8~߅eKŔŘV)`,)SEAf,c̗0OXL)/J\m)R^0<lT_?Бz ߡ&Kz ' ,֔m߆-mJ=T/Í' ,֔}—q *3 DŚOj=ѯ7͘' ,֔}—,d;7Ñp[2û ?QԞ,l"^:̗0_<|ofy V+b~ 0_|62z|#曘oε3Zr ZH$;o\H+a)Ŀ%/{-nH{ε d 2(V@ );Jm/ZOg _:7f&a6?0|/0?`o3;y'?f"ay5o":;`2AXg ߿lscdt2j+<}Cx_[P "@_acHGy1Dr7<Z|c;XOi~dS7Z2Os?b>%N]${{zn;cǃ2bMu?X)ƺ\v0{<%3-bh;?dczc#-\Ӽ]{'g{&o+o{kfeěx{cg3<6ڼ!s~6D 6τsznfy V+r0^| 1oc~+ۘg<`72`ɩw2w37 !,]t>(! r$h`mQVv3{ F\Q{ƞz^zdW1 ;3 sQo_B85?7H?ΥCC79md=ӝ}y]ZZٺcox_R7*{w_BT=WunUW:χ<5恐/b$}~0wвx>PLƐkwEw|uȃ!*|67ZfV,'O1!3uf7-#0# w hOږ{hue_^L$>GÙ|>'+>ӏюf;:^b6奌\Ks,)^Xn vA|>cִ43vrW[E| gooӉjCJmq:o)ve!=-{WF,#G|U (үe >'&>F5o!⇈#~qxM1 q? F_4\m !5\mE$\lO#' d+_DjZgC~p˵2\m2!lۉ A|;wj+8fʻBpwj+!CpG W[y?~o#3 d+7v~lkk˜ni3~^^K^O)x}/bx} ^Ex}$׷Ok nw;7{3~x}G^ߖo$.}Sۉo'.z>P.]KKĻnjxqѳԶ?j[}k>3HZ~9v~P^߭ x@շԶT{#7ێV^Z/z > 7&V}^}^߶j[}_E=׷}>S ^]w'VrY &mO{!{flE^d\.x}2\m ^ =oVE6\| ^ߧ =IC>w .z>s$V߶.jDK俛x7qYx}5\|^g 'O\|^ߧ }m6fK{ ɾI۟d=]\g%ψMC:7||m畽>[>DMoMc}{N|+3#+xC mx&C2WR1\d纚+Crةn8hMyvy~|scS?*:+2'Fƿ#kwJa7>x!{9n>wZE148bcWj|Z]1?82kb狐oGƼ29!`|>Jy0)>EϦ\ }N>L9-Ϲ:$!Duʘ^K^Z[7c(5vI1+<}$^/Ǭ2)gNP쬠XV޻&6N{wZK}$.U]_ذ"ڕlketLד%73mIGزSϥtc1=[BRS TM9)kdEϔXET:Ȉjx?ǩڼ({oϡ<;/5H,>D̋)Nbۯ6OObQ鿏I8Ol>$Gb;gT)w{"^V&*+nPLR~](oWxC:_TZ9묥YTsXW>} aa$q[js3%-GP)goa^E{I3{(=3 ̫O~R1&~Z0fS^cX}2:ڧjQ|0x7X?WTfbXTqɱWK'{^g&׋Ui}㺟I' >i O|2 >` o6x1k)ߙf ~o7x iNw6xe ~3[ ?f >hA2.?i' 1G 70!2a610 0I9z;U;='(ݟ\?s%́<|]gCx~}wCϩ/q3 gg[>3o4Gx{>@g3N}$pwgUξ"p?$5q!x@3 {>HrZsgo;{V3ߜS_)p? xɜ`|ǝ8_8ɜ`|_cjWY뽽ҵ.WIC~h}@Zh}owZ6h};-Wٗ}~h}CZ}~Z@['RǠ} ZG}ZG}Z68yZeؗ"_ah}wZEh}!h}Ah}˾7S;Or+iLw+[]wZ.R_%c/-_˾~h}>h}GZ{-e}Ғ?`_{/B{ZK}˾Է?`_{jjjnַٗ^unw%oƏ}Ah}B[޿/-ٗc_uh}נOA%>lp$'߂ַR߯BUh}Kh >np~Zg}Zo@ h}F]DoqmlNtڳve3 *rm%̝ڣVN77=ܝ{skݩWd'ek!9Ci_CiMU)[S<Ӭ[< YWK֭ZCxQ.񪸄Ƌhr1{}sue e~3V;?T˴oy}hr9+=j˝4^2SF>5'/>rٵCL̘9m9q [mc^FsQIo'<_R' z1yϗHגcfg?Bһ1XmEIys y:g'ty%}Xz  )yݚ7M )]y[k3{9{CWz~/W7N5[8"Jl&߮zVB%-={H޹}e2FCye]oRWZ,JKMq"$seGϟss#ڝu8?8VC秫&~ ]"xe;m,sVEXXt l-H?MNqlsvhJSBEt!ޭXXl[yS,酌rX챸qY "b07z"cbqEZCXŹT^ug.syrH\oOav,2%q^2EZwZ911:$s(e͋ɗj"MFXd,[,.޼Xm>:_ʵ@)Klx.Bs8.'ߖ˝Yꦴ,so~Lzv4ی[3xʍ` F]͡v@1cӞeӻ+tf`:+Frx*?Drrtʿ^*]|cM=աwoD@\Gw>@*7{o9wι3 ml1ٸ V.EZ|QBEc{)_%2>KEާ mq\.oVa=ƊDK>|݀BrPlO8~¾}>PRɸ+f؅8/buY^ ^x_s~S$!s:7~㴟]P(|@ Tx[ިF*VU RxK^kK_qzu §i =+gsIG[xﲈe_V_PީN(E oTxk^**TE/yJ^ S:oP?YE[QVoU BO*I7*Q[O oVPATs NG~D~L] RIT)Rx>Vi+|X UYs9o-$8r.uȎ \s(ρ/s2揜kMї+ pPGI3g1ƾ-pv c7.ppKq2b뉓T1 t̤sM cw5O8nj71霓*f[1SI3ަnj9fcnc c{{{UpxAc1Cc*f|5njA_=>w=>Di]? >fp }{7 w[R8nWM[?Rr,<~\}X>[w+>oyK}c{'DZԷ8R6p-Oɱ7Wz.g}j.ןcoYK}W{շ ʱԷX[_K}coy9DZԷ~ \}7p4~\}wnp}\}WR\}Wap}\}w.p-߭z>(>6pɱԷ9k5ONN^ַ/RRK}c:p]9#RrX[8~\}?w;W#,> 0x±/Up*DZp}\}+_gycqp=>Ym.6Kr9Gy{5 j0m!f>{h[IrCNr}rU r*UJSe-\x9m$&C&kxW#xȩXWC@X , W'xȩ?>^9 xiX@킇o!gr}]+xk-\o/9M񚈷_Z`>~rZUj-\xm6kxmk<[ ,k'^!Z`>^9#xXC^CNr}^ roP3h-\oxC!kxCsyկ04`duf]wԽZrswZ|Q_བྷ}_s}S:埸h? XqwȌmt0jp8go1=qo/)'OۿïTG$87л>lLs-:a3iKIK>{T+Ak; 1,_;8FV77ߪfχOnlSWx-f?^K|OO,cl'%}OK1ryrڒ9{)+1rVzrSΓ1rl<9c\@9xr6ȹޓrn䬎ʓr~ݓ"FίyrP2OΒ978WsjmL9n^c?8}~ǵ)o%BZv/x-nqhm>크[{Dy*Lݖ5r!|ja-=YxM_ ֒xn% pu]]dtT};r'Lon\ϮƴIK㈵"_-gXo8Zd,^-soTuE\`Sk`-RխOio_zߡSx\?\bv4 Rg|0}9~$W!r3{g{zq;Gz{rkx8Ź·{\g?/9O;6FtD6Jc&!7OJo :|wf m\+<^["c.ڻ]&e b/!/#|)ȯ UeW*ɗ_C|%At-0Nj 6~ϙO NV28k9o^]+|n ?>N/v$En'ɿ@O^}ɿD~ɟ& !g?K~(sȟ=Wx-qljPoGI9p&p7-LĘGDZ>uѰ~KO(@يV|P|2g_rhciکqYs1WU*Ks2&x`g1;εS1}W&~Z3c1jrr?!xg&'x?f1g(·>y]^c9Y`[cL w:A`{ `{g`{w>^ ׂ5`{ |ϫjloߒQ|ZZZZ_*T/WsKaU\\*e^9*HO0EcO}<B(̓!Kv/JqXmxJfWtɼg]]O9- _7|y]MpL 9%>_}ܩfK[_yV)))%ɑfW}ѝݪSx"sigjj_7rTҎEwc<9$Mv* ;f:tDByYpL'B˭&w㚗|bkYErwBv}q*sNӪxޞ]vJ]U^fO.&[zuh> oa٦ ׮0۾gsUpܼٗ>RZLpf+"siWjq1Zg1:-Qo \tZZ Z]E|Nz Zd.->q/ZDCc"izk.'"kТn)O;yuZ>O*"si1~]ؠnc"i1q "si1~]ž ZiNZT+-K?b-EH1_4[jq|2X-^y_luir_Sx(:3BhV9!K%s U /^&BᗄW aa"aa#ƎNEbvCZi1~];~]N7_vqIH8p0#C#L' NI8p$(G Gf!&K8p<‰'N!J8}פm6r~*z^(c`p9׸ W3"`Ppʌ40'` Xh*L<̑y9>f&yHz;No3k5+77c$[^[ڻ|^jx뫅jh/௯UPf̙SU]4+uK֪Bt O2O)>tjSm}I pollutant (i.e. pollutant ambient concentration) with the health effect it causes, population density and age structure in the observed area (locally and for the whole of Europe), and costs of the estimated health effects. Each of these steps inevitably incorporates a dose of uncertainty, due to atmospheric model imperfections, transferability of data from one context to another (e.g. extrapolation of exposure-response functions from the laboratory to the field and from one geographical location to another, transferability of monetary values from one country to another), the fact that some impacts cannot be quantified or monetized at all, etc. However, there is a consensus among experts that transference of input parameters and results is to be preferred to$&PP/ =!@ "@ # $ %EXTERNAL COSTS: AN ATTEMPT TO MAKE POWER GENERATION A FAIR GAME (CASE STUDY CROATIA) Tea Kovacevic, Zeljko Tomsic, Nenad Debrecin Faculty of Electrical Engineering and Computing Zagreb, Croatia ABSTRACT External costs of electricity represent the monetary value of the environmental damage caused by electricity generation. They are here calculated applying the impact pathway methodology on Croatian specific conditions. This paper estimates the external costs of coal and gas fired power plants determined as main candidates for Croatian power system expansion till 2030. It is analyzed how the estimated external costs, when incorporated into total production costs, would affect the competitiveness of fossil-fired plants compared to other electricity generation options, i.e. how they influence the optimal expansion strategy of the Croatian power system. I. INTRODUCTION External costs of electricity are the costs imposed on society and the environment that are not accounted for by the producers and consumers of electricity, i.e. that are not included in its market price. External costs should reflect the price of the environmental damage caused by electricity generation chain. They include damage to the natural and built environment, such as effects of air pollution on health, buildings, crops, forests and global warming; occupational disease and accidents; and reduced amenity from visual intrusion of plant or emissions of noise. Electricity generation chain embraces activities such as construction of new power plant, fuel extraction, fuel transport and processing, power generation, waste disposal and electricity transmission. The largest external costs within that cycle are those attributable to the power generation itself, i.e. at the power plant location, and thus are given highest priority. II. METHOD DESCRIPTION Impact assessment and valuation are performed using the 'damage function' or 'impact pathway' approach, which relates to a sequence of links between the burden and its impact. This approach assesses impacts in a logical and transparent manner, going stepwise as shown in  REF _Ref450186314 \h  \* MERGEFORMAT Figure 1. 1. Emission quantification2. Atmospheric transport and dispersion3. Impact estimation (dose-response)4. Damage valuation (external costs)Figure  SEQ Figure \* ARABIC 1 Impact pathway methodology, (1( The impact pathway methodology consists of the following steps: (i) quantification of emissions, (ii) calculation of the associated ambient concentration increase by means of atmospheric dispersion and transport models, (iii) estimation of physical impacts using various exposure-response functions, and (iv) finally monetary evaluation of damages. In this analysis, the EcoSense model was used to assess damage costs caused by emissions from fossil-fired power plants in Croatia. It has to be stressed that environmental damage does not necessarily constitute in its entirety an external effect, so external cost might be different from the calculated damage cost. Impact pathway method requires a detailed description of the reference environment, which in this case includes meteorological conditions affecting dispersion and chemistry of atmospheric pollutants, functions linking exposure to a particular pollutant (i.e. pollutant ambient concentration) with the health effect it causes, population density and age structure in the observed area (locally and for the whole of Europe), and costs of the estimated health effects. Each of these steps inevitably i ignoring some impact categories. Focus of this analysis has been put on the effects of ambient air pollution on human health, as one of the priority impacts of electricity generation. Since the impact pathway methodology yields rather site-specific result>uEuFu\u]u^u_uuuuuuuuvvv-x/xAx{{IKYZ[\]~ށ߁0123g{DDEFJTTTTUU,U.U0U6URVֽjU jU6 j] j[5 hmH nHH*mHnHjdUmH jUmHmH CJmHnH jCJUCJDJKWXY܁݁ށ./0DDDD0EEEEE$V$$&PP/ =!@ "@ # $ %EXTERNAL COSTS: AN ATTEMPT TO MAKE POWER GENERATION A FAIR GAME (CASE STUDY CROATIA) Tea Kovacevic, Zeljko Tomsic, Nenad Debrecin Faculty of Electrical Engineering and Computing Zagreb, Croatia ABSTRACT External costs of electricity represent the monetary value of the environmental damage caused by electricity generation. They are here calculated applying the impact pathway methodology on Croatian specific conditions. This paper estimates the external costs of coal and gas fired power plants determined as main candidates for Croatian power system expansion till 2030. It is analyzed how the estimated external costs, when incorporated into total production costs, would affect the competitiveness of fossil-fired plants compared to other electricity generation options, i.e. how they influence the optimal expansion strategy of the Croatian power system. I. INTRODUCTION External costs of electricity are the costs imposed on society and the environment that are not accounted for by the producers and consumers of electricity, i.e. that are not included in its market price. External costs should reflect the price of the environmental damage caused by electricity generation chain. They include damage to the natural and built environment, such as effects of air pollution on health, buildings, crops, forests and global warming; occupational disease and accidents; and reduced amenity from visual intrusion of plant or emissions of noise. Electricity generation chain embraces activities such as construction of new power plant, fuel extraction, fuel transport and processing, power generation, waste disposal and electricity transmission. The largest external costs within that cycle are those attributable to the power generation itself, i.e. at the power plant location, and thus are given highest priority. II. METHOD DESCRIPTION Impact assessment and valuation are performed using the 'damage function' or 'impact pathway' approach, which relates to a sequence of links between the burden and its impact. This approach assesses impacts in a logical and transparent manner, going stepwise as shown in  REF _Ref450186314 \h  \* MERGEFORMAT Figure 1. 1. Emission quantification2. Atmospheric transport and dispersion3. Impact estimation (dose-response)4. Damage valuation (external costs)Figure  SEQ Figure \* ARABIC 1 Impact pathway methodology, (1( The impact pathway methodology consists of the following steps: (i) quantification of emissions, (ii) calculation of the associated ambient concentration increase by means of atmospheric dispersion and transport models, (iii) estimation of physical impacts using various exposure-response functions, and (iv) finally monetary evaluation of damages. In this analysis, the EcoSense model was used to assess damage costs caused by emissions from fossil-fired power plants in Croatia. It has to be stressed that environmental damage does not necessarily constitute in its entirety an external effect, so external cost might be different from the calculated damage cost. Impact pathway method requires a detailed description of the reference environment, which in this case includes meteorological conditions affecting dispersion and chemistry of atmospheric pollutants, functions linking exposure to a particular pollutant (i.e. pollutant ambient concentration) with the health effect it causes, population density and age structure in the observed area (locally and for the whole of Europe), and costs of the estimated health effects. Each of these steps inevitably incorporates a dose of uncertainty, due to atmospheric model imperfections, transferability of data from one context to another (e.g. extrapolation of exposure-response functions from the laboratory to the field and from one geographical location to another, transferability of monetary values from one country to another), the fact that some impacts cannot be quantified or monetized at all, etc. However, there is a consensus among experts that transference of input parameters and results is to be preferred to ignoring some impact categories. Focus of this analysis has been put on the effects of ambient air pollution on human health, as one of the priority impacts of electricity generation. Since the impact pathway methodology yields rather site-specific results, the analysis was conducted for the most representative power plant locations and most probable generation technologies. For locations this means choosing flat urban areas in the continental part of the country, while for technologies it assumes the best available ones that comply with environmental standards in Croatia and are considered to be candidates for future construction. The analyzed burdens relate only to routine emissions, while accidents are not taken into account. Since air pollutants are transported over large distances crossing national borders, their impacts are quantified not only on the local level, i.e. within 50 km from the source, but also for the whole of Europe. III. THE ECOSENSE SOFTWARE The software used here for calculation of externalities associated with electricity generation is EcoSense, developed within the European Community project ExternE. EcoSense (2( was developed to support the assessment of priority impacts resulting from the exposure to airborne pollutants. It constitutes of several databases: technology, exposure-response and reference environment databases. The reference technology database holds a small set of technical data describing the emission source (power plant) that are mainly related to air quality modeling, including e.g. emission factors, flue gas characteristics, stack geometry and the geographic coordinates of the site. The impact assessment module calculates the physical impacts and the resulting damage costs by applying the exposure-response functions, based on receptor distribution and concentration levels of air pollutants from the reference environment database. EcoSense also provides two air transport models (local and regional), to cover different pollutants and different scales. One is The Industrial Source Complex Model (ISC, developed by the US-EPA), which is a Gaussian plume model used for transport modeling of primary air pollutants (SO2, NOx, particulates) on a local scale. The other is The Windrose Trajectory Model (WTM, developed in Harwell Laboratory, UK) used to estimate the concentration and deposition of acid species on a European-wide scale. IV. EMISSIONS The most important pollutants emitted from fossil-fuelled power plants are carbon dioxide (CO2), particulate matter (specially relevant for health effects are fine particles less than 10 and 2,5 microns in diameter respectively, so called PM10 and PM2,5), sulfur dioxide (SO2) and nitric oxides (NOx, i.e. mainly NO later oxidized to NO2). Apart from that, SO2 and NOx are subject to chemical transformations in the atmosphere, forming the so-called secondary pollutants: sulfuric and nitric acid (H2SO4 and HNO3), sulfate and nitrate aerosols and tropospheric ozone (O3). Both primary and secondary pollutants cause certain health effects, but here are considered only those for which the atmospheric modeling and the exposure-response functions are provided. Since modeling of ozone formation involves considerable complexity in both plume dynamics and chemistry, health effects associated with ozone are not quantified here. Impacts of global warming are not covered either because of the very different mechanism and global nature of impact. V. ATMOSPHERIC DISPERSION AND TRANSPORT MODELS On the local scale, i.e. within 50 km from the source, chemical transformations of pollutants can be neglected and thus their concentrations predicted using Gaussian plume dispersion models. These models assume source emissions are carried in a straight line by the wind, mixing with the surrounding air to produce pollutant concentrations with a Gaussian spatial distribution. One of them, used in EcoSense, is the Industrial Source Complex Short-Term model, version 2 (ISCST2) developed by the U.S. EPA. The area analyzed in the local dispersion is represented by 10 x 10 grid of quadratic cells each 100 km2 in size, with the power plant positioned in the grid center. The model calculates hourly concentration values of SO2, NOx and particulate matter averaged over one year at the center of each cell. Gaussian models require detailed description of meteorological data at the plant location provided by the user. They are valid up to 50 km from the plant. However, pollutant transport extends over much greater distances, when chemical reactions and formation of secondary pollutants can no longer be neglected. Therefore, different models are required for assessing long-range (regional) transport of pollutants, the most common are the Lagrangian trajectory models. Receptor-oriented trajectory model examines incoming trajectories of air parcels arriving from different directions to the receptor point (which is characterized by its mean annual windrose), moving at a representative wind speed and constant mixing height. European-wide transport of pollution is in the EcoSense software handled by the Windrose Trajectory Model. Europe is represented by a 42 x 27 matrix of large cells, each 10000 km2. The outputs from the model are atmospheric concentrations and deposition of emitted species and secondary pollutants in each grid cell. All input data required to run the Windrose Trajectory Model are provided by the EcoSense database. VI. PUBLIC HEALTH EFFECTS Combustion processes cause an increase in the concentration of certain atmospheric pollutants that might be causing adverse health effects within the general public. There is now a broad-based body of evidence showing small but definite increases in risks associated with increases in air pollution, with no convincing evidence of threshold. Acute health effects, which occur on the same day as increases in air pollution or very soon thereafter, should be distinguished from the chronic or delayed effects of possible long-term exposure. There are less exposure-response functions for chronic effects since they are more difficult to estimate than the acute ones. It should be stressed that the acute mortality effects occur predominantly in older people, almost certainly with serious pre-existing health problems, though the precise mechanism of action is not yet resolved. Length of life lost in those who die prematurely following higher pollution days is also unknown, but is likely to be short  a few weeks or months. Averaged reduced life expectancy among those who die prematurely from chronic effects of air pollution is likely to be much greater and is measured in years. The incremental air pollution attributable to power generation is a mixture of pollutants emitted from a power plant and those formed subsequently in atmospheric chemical reactions. Complex studies were made to disaggregate that mixture and determine separate exposure-response functions for each pollutant (particles, SO2, NOx and ozone). Most of the exposure-response functions used in the EcoSense model are chosen from studies which showed statistically significant relationship between pollutant and health endpoint and which eliminated possible confounding factors due to other pollutants. The strength of these studies is that relationships, expressed as percentage change in health effect per unit exposure, seem remarkably invariant to changes in population, location and pollution mixtures. For ease of implementation, the exposure-response functions are linearized, assuming independence of background levels and no threshold existence. Extrapolation of exposure-response functions to very low pollution increments, particularly at distances far away from source, without a threshold, may lead to an overestimation of effects. Quantitative relationships have been established linking air pollution with a number of health endpoints. Health impacts are divided into three categories: mortality, morbidity and accidents. Only first two categories are observed here since they refer to normal operation of a power plant. It is dealt with premature mortality (acute and chronic), restricted activity days, hospital admissions due to respiratory and cerebrovascular problems, as well as emergency room visits due to exacerbation of asthma and chronic obstructive pulmonary disease (COPD). Here is how additional mortality and restricted activity days due to air pollution can be calculated, based on the given exposure-response functions: Mortality (number of cases) = exposure-response slope/100 ( baseline mortality ( population of the observed area ( pollutant concentration increase ((g/m3). Restricted activity days (number of days) = exposure-response slope/100 ( population of the observed area ( percentage of adults ( pollutant concentration increase ((g/m3). Table  SEQ Table \* ARABIC 1 Summary of exposure-response functions and monetary values used here (1( Impact CategoryMonetary value (ECU)(1)Pollutante-r slope (2)Receptor: Total populationAcute mortality(3)155.000PM10 and nitrates0,040%PM2,5 and sulfates0,068%SO20,072%NOx0,034%Chronic mortality(3)83.000PM10 and nitrates0,390%PM2,5 and sulfates0,640%Hospital admissions7.870PM10 and nitrates2,07(10-6respiratoryPM2,5 and sulfates3,46(10-6SO22,04(10-6NOx2,34(10-6Hospital admissions7.870PM10 and nitrates5,04(10-6cerebrovascularPM2,5 and sulfates8,04(10-6Emergency room visits223PM10 and nitrates13,7(10-6for asthma and COPDPM2,5 and sulfates22,8(10-6Receptor: Adults(4)Restricted activity days75PM10 and nitrates0,025PM2,5 and sulfates0,042(1) mortality values given at a discount rate of 3%, based on YOLL. (2) slope of the exposure-response function is expressed in percentage change in annual mortality rate per unit of pollutant concentration increase (% change per (g/m3) for mortality, while in number of events per person per (g/m3 for morbidity. (3) baseline mortality in Croatia is 1,1%. (4) age group 14-65, in Croatia 68% of total population. VII. MONETARY VALUATION OF HEALTH EFFECTS Health impacts are generally valued more highly than the conventional economic approach would suggest. Mortality impacts can be valued based on the willingness to pay (WTP) for reduction of the risk of death, or on the willingness to accept compensation (WTA) for an increase in risk. WTP or WTA is converted into the value of statistical life (VSL) dividing it by the change in risk. For example, if the estimated WTP is ECU 100 for a reduction in the risk of death of 10-4, the value of statistical life is estimated at 1 million ECU. However, increased air pollution can not actually cause 'additional' deaths  it can only reduce life expectancy slightly. For deaths arising from illnesses linked to air pollution it is recommended to use years of life lost (YOLL) calculation, while VSL approach only for valuing fatal accidents and cases where general population is affected and not only risk groups. Value of one year of life lost (vYOLL) can be determined from the VSL estimate, applying the formula below, if one knows the age of the reference group and the discount rate to be applied to present vs. future years of life.  EMBED Equation.3 , where: r  discount rate (usually 3%), Tl  number of years of life lost. If e.g. life expectancy for a prime age male is assumed 37 years and if VSL equals 3,1 million ECU, value of YOLL turns out around 100.000 ECU with zero discount rate, i.e. 134.000 ECU with discount rate of 3%. Morbidity impacts valuation is based on the cost of illness, that comprises the value of time lost due to the illness (valued through lost wages), the value of the lost utility because of pain and suffering and the costs of any expenditures on averting and mitigating consequences of illness. VIII. APPLICATION OF THE IMPACT PATHWAY METHODOLOGY ON CROATIAN POWER SYSTEM The aim of the analysis made here is to estimate costs of health damages through air pollution caused by electricity generation in Croatia. Two types of fossil-fired power plants are observed, one coal and one natural gas fired facility, since they are among candidates for future power system expansion. Both power plants are assumed to comply with domestic and European Union s emission standards, so the emission rates equal the upper emission limits. Basic technical end environmental data are given in  REF _Ref450279940 \h  \* MERGEFORMAT Table 2. Table  SEQ Table \* ARABIC 2 Technical data and emission rates of the analyzed power plants Coal facilityNatural gas facilityGross/net capacity380/350 MW370/350 MWHours on full load6570 h/yr6570 h/yrFlue gas volume1,2E+6 m3/h2,1E+6 m3/hFlue gas temperature403 K403 KStack height200 m200 mStack diameter6 m6 mEmissionsmg/m3g/kWhmg/m3g/kWhParticulates500,16800SO24001,34300NOx6502,1821000,6CO22,45E+5822,90,43E+5258,55 Both facilities are assumed to be located in the densely populated urban area of Zagreb, the Croatian capital. Geographical coordinates of the site are 16( E and 45,8( N. Impact analysis on the local level, i.e. within 50 km from the source, displays a local (so called fine) grid with 100 km2 large cells, the average pollutant increment ((g/m3) in each cell and the total number of health events in the whole local grid. To calculate atmospheric dispersion on the local level, hourly meteorological data for the plant site are required, while for estimation of health impact population density in each cell of the local grid is needed. The basic meteorological data for Zagreb  monthly temperature extremes and frequency of wind speeds and wind directions (so called windrose) in the 15-year sequence  are obtained from the Croatian State Meteorological and Hydrological Service. Since no continuous measurements of wind and temperature were available, and because some additional parameters describing atmospheric conditions are needed for local dispersion modeling, meteorological data set had to be constructed before imported into the EcoSense. Average annual windrose for Zagreb and an approximation of daily temperature curve for each season are given in  REF _Ref450368150 \h  \* MERGEFORMAT Figure 2. Figure  SEQ Figure \* ARABIC 2 Annual windrose and approximated temperature daily flow at Zagreb site Zagreb is not a very windy area, which can be concluded from rather high frequency of calms (13%). The prevailing winds are from north (19%) and northeast (11%). The largest average wind speeds, occurring in northeasterly and southwesterly directions, do not exceed 3 m/s (at 10 m above ground). According to the demographic data for Zagreb and Croatia, population density in the outer city area (comprising 4 cells around the plant, altogether 400 km2) is set to 3000 people/km2, while in the remaining 96 cells to 100 people/km2. Average population density in Croatia equals 85 inhabitants/km2. IX. ESTIMATION OF EXTERNAL COSTS DUE TO OPERATION OF THE ANALYZED POWER PLANTS Local analysis Based on power plants emission rates and local meteorological data, average annual concentrations of SO2, NOx and particulates on the local level were calculated, using the ISCST2 local dispersion model, incorporated in EcoSense. Spatial distributions of pollutant increments within 50 km of the coal power plant are shown in the figures below. The highest concentrations occur in the very grid cell where the plant is situated and in cells downwind the stack, i.e. southwest from the plant. The highest concentration of particulate matter amounts to 0,083 (g/m3, the highest NOx is 1,1 (g/m3 while SO2 0,7 (g/m3.  Figure  SEQ Figure \* ARABIC 3 Ambient concentration increase of SO2 and NOx due to coal power plant To calculate health impacts in the analyzed area, the concentration field for each pollutant has to be multiplied by the population field and the appropriate exposure-response coefficient. Health impacts have no common measure, mortality is expressed either in number of cases or in years of life lost, while morbidity in number of events or number of days. To sum them all up in a single number, health effects should be monetized, i.e. multiplied by their monetary values. Spatial distribution of the monetized health damage due to particulates-caused pollution, per unit of electricity generated in the power plant, is shown on the right-hand side of  REF _Ref450112363 \h  \* MERGEFORMAT Figure 4. Mortality impacts are here valued using YOLL.  Figure  SEQ Figure \* ARABIC 4 Spatial distribution of particulates concentration and monetized health damages The level of health effects decisively depends on the number of people affected. Here the largest health damages occur in the four grid cells around the power plant, where the population density is 3000 persons/km2 (densely populated urban area). Health damages in other grid cells are almost negligible, due to 30 times lower population density and lower pollution increments at larger distances from source. Health damages also much depend on the way mortality is valued  if calculated via VSL damages are several times higher than via YOLL. The largest portion of damage costs, over 90%, account for mortality endpoints, specially if calculated via VSL.  REF _Ref450144800 \h  \* MERGEFORMAT Table 3 gives local damage (external) costs per unit of electricity produced and of pollutant emitted from a coal and a gas fired power plant. Total local costs due to air pollution (particulates, SO2 and NOx), amount to around 9 mECU/kWh via VSL, i.e. 1,1 mECU/kWh via YOLL. If the population density in the whole observed area equaled the average value for Croatia (85/km2), the damage costs would be only 0,61 mECU/kWh (VSL) i.e. 0,08 mECU/kWh (YOLL). Health impacts of the gas-fired power plant originate only from NOx emissions. Total health damages on the local level amount to only 0,5 mECU/kWh (VSL), i.e. 0,02 mECU/kWh (YOLL). With the average population density of 85 inhab/km2, health impacts and the associated damage costs would be only 0,03 mECU/kWh. Table  SEQ Table \* ARABIC 3 Damage costs of air pollution caused by electricity generation * VSLYOLLVSLYOLL(mECU/kWh)(ECU/t)Coal local scaleParticulates2,080,8412.4145.003SO23,880,152.889110NOx2,970,121.36253Total local costs8,941,10Coal regional scaleParticulates (a)0,641,693.82510.082SO28,380,326.237235NOx4,350,161.99375Sulfates (a)3,7310,162.777 (b)7.568 (b)Nitrates (a)6,7717,983.101 (b)8.240 (b)Total regional costs23,8630,32Gas local scaleNOx0,500,0283533Total local costs0,500,02Gas regional scaleNOx1,150,051.91576Nitrates (a)2,035,383.383 (b)8.962 (b)Total regional costs3,185,42* health damage due to tropospheric ozone and global warming is not included. (a) VSL-based chronic mortality due to regional-level particulates, sulfates and nitrates is not quantified in EcoSense, so the YOLL value is larger. (b) sulfates are expressed per ton of SO2, while nitrates per ton of NOx. Regional analysis Regional analysis of health impacts caused by operation of the two analyzed power plants was conducted for the region of Europe. Since meteorological and population data for the whole of Europe are incorporated in the EcoSense model, the only necessary input data for the regional analysis were power plant s latitude and longitude and emission rates. Table  SEQ Table \* ARABIC 4 Maximal regional concentrations ((g/m3) CoalNatural gasParticulates0,007-SO20,052-NOx0,0690,019Sulfates0,008-Nitrates0,0280,008 According to the European-wide atmospheric transport and distribution, there is an increase in ambient concentrations predominantly in the north and northeast from Croatia (Austria, Hungary, Slovakia). Maximal pollutant increments are given in  REF _Ref450354590 \h  \* MERGEFORMAT Table 4. Health impact distribution depends on the population density, and is similar to the concentration field. Health damage costs on the European level, due to operation of the analyzed power plants, are given in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3. They are much larger than local damage costs, due to more people affected. Since VSL-based chronic mortality is not quantified on the regional level, YOLL-based mortality (and therefore total damage costs) is larger. Total regional health damage amounts to 30,3 mECU/kWh for the coal power plant, and 5,4 mECU/kWh for the gas power plant. It has to be stressed the figures in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3 include neither NOx damage through ozone nor CO2 damage through global warming. There are suggestions to set the average ozone damage for the whole Europe to 1500 ECU/t NO2, (3(. The range of suggested CO2 damage cost is very broad (3,8-139 ECU/t CO2), with the geometric mean estimate of 29 ECU/t. X. INCORPORATING DAMAGE COSTS IN POWER SYSTEM EXPANSION PLANNING Although the calculated damage costs do not necessarily constitute externalities in their entirety, they can be used as good indicators of external costs. External costs can serve as an additional criterion for the evaluation of different energy scenarios, thus introducing the environmental aspects into the social cost optimization process. Only the air pollution ( health impact pathway was observed here, i.e. only impacts of coal and natural gas combustion. Other fuel cycle steps and externalities of nuclear and hydro facilities are not taken into account. After having external costs estimated for two more or less representative power plants (reference technologies and rather a representative location), an attempt has been made to extrapolate them to the whole electricity sector and include in the planning process. Of course, it is a rather hypothetical exercise intended to give only a rough insight in what the consequences of external cost internalization might be. Two extreme scenarios of Croatian power system expansion are observed: one with unlimited and the other one with very limited availability of natural gas, those two spanning the expansion options range (4(. The question is how to meet the forecasted electricity demand at lowest possible cost, i.e. what kind of new units and in what dynamics should be built in the next 30 years. Candidate non(hydro power plants are coal, gas and nuclear facilities, with annualized production costs given in  REF _Ref450216288 \h  \* MERGEFORMAT Figure 5. Since the gas fired power plants are the cheapest, they are the first to enter the optimal capacity mix, so if gas availability is unconstrained the optimal expansion plan will constitute of gas fired units only ( REF _Ref450217149 \h  \* MERGEFORMAT Figure 6, fist bar on the left). If on the other hand only a small part (20% in the scenario gas-min) of the total capacity needs can be gas fuelled, the rest has to be met by coal and nuclear units (almost 40% each, as shown in the fourth bar from the left). That optimization result is based on traditional, i.e. private costs of electricity, which include investment cost, fuel cost, operation and maintenance costs and costs of unserved energy. Figure  SEQ Figure \* ARABIC 5 Annualized production costs with and without external costs added What happens if external costs are added to private costs? Since external costs are proportional to emissions, they should be added to variable component of the production costs, which is reflected through lifting up the right-hand side of the cost curve. Because only the air pollution damages were quantified here, fossil fired power plants are the only ones to experience increase in costs. If local external costs are added, following the values in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3, cost increase is almost negligible. The capacity structure in both scenarios remains practically unchanged with respect to the base case, except for the slight increase in hydro capacity. (Base case refers to private cost only). That can be seen comparing the first two bars, i.e. the fourth and fifth bar in  REF _Ref450217149 \h  \* MERGEFORMAT Figure 6. Figure  SEQ Figure \* ARABIC 6 Optimal capacity mixes and cumulative emissions in the analyzed scenarios However, if regional external costs are added, costs of coal units dramatically rise (at full load they get more than doubled), that having large consequences on the optimal capacity structure. The absolute advantage of gas units is also shaken  even with unlimited natural gas supply, two nuclear units enter the optimal expansion plan. If natural gas is limited, as much as four nuclear units are added to the system (almost 70% of total capacity). Figure  SEQ Figure \* ARABIC 7 Emissions in the analyzed scenarios Emission curves for three gas-max cases and three gas-min cases are given in  REF _Ref450217149 \h  \* MERGEFORMAT Figure 6. The base case and the case with local external costs have the same emission curves, while the one with regional external costs included sits much lower. Optimal solution is much more affected by external costs if there is a limited quantity of natural gas, i.e. competition existing only between coal and nuclear facilities. Having the regional external costs included in the planning process leads once to four times lower emissions (that if natural gas is limited), and another time to only 30% lower emissions (that if natural gas is unconstrained). XI. CONCLUSION External costs of electricity represent the monetary value of the environmental damage caused by electricity generation. Evaluation of externalities, better say damages, using the impact pathway approach is the most comprehensive but also a very site-specific routine. Since this paper is one of the first attempts to evaluate electricity externalities in Croatian power system, the focus was put on priority impacts for Croatia. Those are health effects of air pollution caused by coal and gas fired facilities, which are candidates for construction in the following 30 years. Damages linked to coal power plants are much larger than those linked to gas fired facilities, since the latter are responsible only for NOx emission and nitrates. The largest share in the damage costs accounts for mortality effects. The highest damages are attributable to particulate matter, on local level directly while on the regional level in the form of sulfates and nitrates. Health damages highly depend on the number of people affected  that is why local damages (within 50 km from the source) are much lower than on the European scale. When incorporated into electricity system expansion planning, the local external costs do not significantly influence the optimal capacity mix, but the regional external costs do so in a great deal. With regional external costs added, competitiveness of coal units gets largely reduced, so they lose battle with nuclear units. Even the absolute priority of gas units is disturbed and some room in the optimal capacity mix opens for nuclear power. It has to be stressed that external costs of coal power plants can be lowered by further reducing their emissions, i.e. by applying more efficient abatement technologies already available on the market. Of course, that would induce some additional direct costs. A particularly important question here is the selection of spatial boundaries within which the external costs should be internalized and imposed on the polluter. Numerous analyses proved it is due to pollutants nature necessary to capture impacts as fully as possible. However, it is very important to define geographical scope within which those impacts should be taken into account, since that can seriously influence decision making in the country of emissions origin. REFERENCES (1( ExternE - Externalities of Energy, EC EUR 16521 EN, DG XII, Brussels, 1995. (2( EcoSense, Version 2.0, IER, Stuttgart, 1997. (3( ExternE - Externalities of Energy, EC EUR 16523 EN, DG XII, Brussels, 1998. (4( D. Feretic, Z. Tomsic, T. Kovacevic, M. Bozicevic: Croatia MESPO Report, research study prepared for the IAEA Wienna, Faculty of electrical engineering and computing, Zagreb, 1999. EEEEEJJJKKKxRzR|RRR4U6UlUUVPV$$$$$$$$$$$ & F PVRVVVZV^VbVdVV\Dd$USQQE$$T8\O B $$h$$x$ $>x$E$$T8\O B RVTVVVXVZV\V^V`VdVrVtVVVVVVVVVV\Ddrkmmmm.u0u8u:uwwxxxy,y.y\y^yyyyyyyzzzz{{z{|{^`HJRTؚښ OJQJmH H*H* j] j[mH  j]CJ j[CJ CJmHnH jCJUCJ j.UmH j,UmH jU j^UmHEDdrktkvkkkkrvvvwww468 ؎ڎ܎ $ & F $ & F V:TV(Hx||E$$T8\  $$ & F$  $ & F$ $ & F   & Fx   & F  46^`LΨШDFLNVbd "$&(pv "&Z`8>ʬ̬ЬԬ "&*68BDӼӼӼ jCJCJH*6CJCJmH CJH*CJ j]CJ j[CJ CJmHnH jCJUCJH* jm j6JBP $ & F$ E$$T8\  $$ & F$  $ & F<$  PRTV|«īt88 $$ & F$  $ & F$ E$$T8\ ī .024Zht $ & F$ E$$T8\  $$ & F$  $ & F$  hj¬֬ج,XE$$T8\  $$ & F$  $ & F$ E$$T8\  ,.02:NPRT\prʭޭDD $ & F$  $$ & F$  $ & F$ E$$T8\ DHLXZdfjnҭԭحܭ 026:vzڮ 28B~lr.068X^ z.2ֺ޺XZڼܼ ľH* j$5EHUj : UV jUH*OJQJmH H*OJQJmH  OJQJmH  jmCJ6CJ jCJCJH*CJH*CJHޭ(<>jrXE$$T8\  $$ & F$  $ & F$ E$$T8\  Ԯ֮:X`J $ & F<$ E$$T8\  $$ & F$  $ & F$ E$$T8\ :<>@Btz $$ & F$  $ & F$ E$$T8\ $$ & F<$ ֯lp]K$ & Fex E$$T8\  $ & F$   & F$ E$$T8\ lX "$z|~VXؼ ƾ $ & F   & F $ & Fxx $ & F  & Fe >Tjlc:$$TFwpi<$$T4Fwpi$$$$$$  & F  $ & F  ľ  HJLN68\^tv|~,.Z\־־־mH j8UmHj$8U jmH* jB*B*CJH*mH 6B*CJmH B*CJH*mH  B*CJmH  CJmHnH jCJUCJmHnHj7U jU?l 8DPRlxh`:$$TFwpi$$$$$(,0l$$R$$T4rws pli$$$ 02:BNRVX`ht|L\$$$$$$$$R$$T4rws pli}rpe  & Fx  $$l $ & F$   & F7   & F  & F R$$T4rws pli$$ \^`vxBFd68@B&(.068:HJvxz| &(TVvx*,.0~& jfUmHmHnHjzfU jUCJH* jLUmH jmH*565H*CJ jCJU CJmHnHHBDFdf46: F $$$$$x $$ & Fx   & Fx   & F  $ & F  $ & F  & F &(HJVXZ68^`FRT~ 02Z|2Vp*,hn 4RZprͻͻͻͻͻͻͻ͵ѮB*CJOJQJ CJOJQJ 56CJ B*CJH* 6B*CJ B*CJH*B*CJCJ6CJ CJmHnH jCJUCJH*H*mHnH jUj`}UA$.02HXZ|~TiXd^^$$$$<$$T4F1A$P$$Tr1 }A$$$ $$$$$R$$T4r1 }A$$$ *02V`jlnd`|$$$$$$P$$Tr1 }AnpdQJ$$R$$T4r1 }A$$$$P$$Tr1 }A$&.8BNTVpd`$$P$$Tr1 }A$$$pz 4@LNPRT$$$P$$Tr1 }A$$$Rrtvxz|X$$R$$T4r1 }A$$$$  |T`M$$P$$Tr1 }A$$$$P$$Tr1 }A X^~8:>Bf(46`bdfh(*üüéåmHnHj}U jUH*mH CJH* jmCJ 56CJ CJmHnH jCJUCJ56CJH*CJH*CJ B*CJH* B*CJH*B*CJB*CJOJQJ5CJ 56CJ 6B*CJB*8 (2>D`$$R$$T4r1 }A$$$ DF`jt$$$$$$P$$Tr1 }A ~>@Bfh({wwtnn$$$$ $ & F   & F<   & F<   & Fx P$$Tr1 }A  "X4<$$Tl4F O<$$Tl4F O$$$ "$,8DFXdhj|DHX|<$$Tl4F O$$$$$<$$Tl4F O  " $ d("*"." $$ & F$   & Fx $$l$$ & F$  $ & F   & F  & F  .0<>@fh46  dfhj  "ԻԱԻԻԧԻ jNUmHjUmHjTUmH jUmH j-mH j]mH j[mHmH j j] j[H*j~UmHnHjZ~U jU?bd>@LNP!!!!""" """*","."0">"@"l"n"p"r"#&&&&&&&&&&&&&&.'''''(䶯jEUmH jCUmH j_UmH jũUmH jUmH jUmHjUmHmHnHjUmH jUmHmHCJmH CJmHnH jCJUCJmH ;."0"#&&&&&&.',,,,,,x5;>> $$$T8 $$ & F$ $$Tl ɿ>>ImT'_p}1hWS$MWqO:{~;drmmidUe}DyK _Ref450217149}DyK _Ref450186314&Dd!YB  S UAb:qt!)['%lnd:qt!)['%PNG  IHDRh^#gAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_IDATx_hZ'N@ )Z`JRQֵGA(j5JDH 8A )Bz3(bb.n3aڦCؐPyٝ}O*}+uhHk5 Q }u]tE׮=]?n Op$c=# {{OՃݠd"!>zoWWו^Q.JWooWɗ?( )M& /@@W=]_ Ua՞^*"K+|!BIt}-K=Q %7(T+G, K?$g lÅZ(_o2rX*t$Re`WW%X«_|-QRA! yle(ZJI%Ri!HAunfİXAQ<>:4\|fmqqbqX H4 )&g G!\_ 5,FO`YN'P$H(Kz}}KpKCr%3gyʗJ4Ny\\\:&lN\\r: WȟLCHрh |y#5/J|:],m4tj0BL2BijnH"SihIE$¶/qK,1VjToWsIjs;r>X״yGRV.K|Uv }ՅD3LiccрjqsDXV׊-VWWiX4(,m21hZ9,K &/p Pvxkk#ϯnlT\ējmcmZfZ)H%r:af6R& _ |IevKOEp<eյFcV-.kk[$4gRRcrLMZȚt:'/9M:ӧm&(ac#bqxkZ.k'>*л.e}iJ,; >l W[ZTol=ndĖ5 Id{\N .B}[z鳧XColAlxX[pk[[Oj>ZMVGB(1'qeoH %e- ={ B}QK2| EkzTp8d6`qL}=5dyvcWRX/rfcsʹRn4Z O:8ˤ8wge< Kէ/5zi@#R6Y.&jVjGJ^p!jūS9 dU +߁?NN[-mJx4LjmZ*Iu8XP߁j R6g1V:==ze7V7 ^_HISW뵵r6TjZY甓 w*k eik2j1yJNH{fg=Ct&MlZAЧp\k0)͸gB^V20J"NYm3뚞va_–T$B=I^ZRe20F ̣#dR.3xpBd6jlvN;I\( 2R..'2Tf+d‘JWPJe\6N@ɇ-RҀBG߽k',MKfr+FD2bd,EX73Z(#Q+"`_bxCML56s%.D$rbt[JrEp&\( B|鐝 s_]CkGhpNmV?\J&qgX&łnl0 `ZXZj1W]'I@P6tZ5FنC7ڡ/9"j%I\S~Eb\aQTup(wQ{CL:/lf=cqNOB\,lr)p:pa0 JzeQѯ͝wGA 6i6h嚝L .#Q|3HU: Gb :e1!@ wmӶZqbz Eb8?@ .&bKK9֍zq\YS(\xzل"DXttJ+8|~xqh8L%+ O8G z$TVUr>w0vGEZ't6뙶F'RNHs4%ST*a)̰H"Uh .! Bbgs߽kEZڿ<bBR&LD  !d(¨k&嶻Ao~L)a[a>?Vv`--%a?] CxJe%BR A$j&L/(1A|t|ttoZmg矶9,<[\r`š; ^0R$) hz%hnr'N;)9YԴgVVV+9 \e P/S˹Ҽ76V{Yqz.d Œ\&Z,Wḣy 9U;z1t,JE2L&8i_*?y_{{Ouzn.;͌+A b1p'cbgfCem/n;{誣Cوldd@z Qa $ Rny#uSP4EK^v~>zYL#d%-ͻ޾{Oo{~Đ'`ׯ dC7ZL:ܜgriI'KK>?I&RH$#igYuyg\^vEH=q[hk~W^ؘL*U(H:cpƆTd6X:dG"q k;Sv pf@Km~gr2222vsL6&BS.Z!M>6(KRXO:5ウKaXz.°A{Hڊ(ԔXL:qks nh&cv)J]V˴n;SS|: O]tn}+@s&R1bNLN'^dNl,ae)sr^2]y[/\s^E|G*90260'lV+\! ѝS64e]<'/FÎG{o^y1$QP:L,OQ}1ŢC>\y[ bz\P" TA{y h#mE|ݠHPRJDORU T"2Ri1,f =a $(80 H$xzPUsS/$<-8DP(RJ ۄLx\a* üAiCl0DA*J%mo&tHyjG&5EZ-&LFvŖV yX?HuY!($AP ;Qb@E(J%(xj-aZM$,5+$.%Y(臝&u܅G/0P0x5$ (<ԔRё5nb y& GnW{|0_.ΫfࠝfAZR-"BT* 4:= vA6 OcI%5(jipJJEMѩ No sG@4qOOM:ɬúwo&2^~C`ww("kRw\,Ptz=!iZE[쮳>G.~8#:~DE*KMB!jt-Eӷh;:'fz͙><8!qD _7<1`Tz-ޠӏԝwQ9a6[ &y8\;''j=Q(D=5 =UƨL,3I,*wѰwxΧ(r(>:|6( XsA'ppp;w-Ҧ F Ƃ(})O(‰kPx0r z4<aLwR4=0 $2a<}]WutD@HR$%"QF{1alPuK.WYڱ , K yJt8BY;"FǗM'j~ eb2:=Fry1WY6GbCr]OhD!go ",]chirn'[82sЃ8:i}7cRF) @iX"3wP܀9C8|Ge^Ԏ]G1@#s ?"z`8x/#ρqhh'ٽÖto^+jIdkU,IodO9PƊj<w{sAc;uۊ۞QdtBRv%g4 "HP?1Hb) ξk:ޡ͛c )9p ~u@mYFd4eq,.{쀾}tGg$#ccRT&zj?|cjKbxMF yC]<κ=[`׿>#o$ ar #֪oOVCq#=+R!tLA翵lh~5/0qcD?JӒ\h:^zJ"039ic : .Q5Fo &VP2 b %pSaY^68{yK>ֻD!䆤]>r,RC$v'4r5-<'M8%}|#?^çĨ1ڧJ_-ٕڈY$4h2''VMAaTO|Nֻ޾^ih8l6JAѝ_4Cäb23N.[ &P(>Yu:.(DNQj!uY9u|wB;FFJ.DžLB4h44Z-3c(ptL;E7A?9i^t/t9 )%4[A~6 Z==n256r  I@ԀH,BGݐ=[R٨R~⏮?z b֐=N>}t.rhK]\eiRy$0tGZK(œ_v¶ zyĨ$SE*\4zJ; (@z:huvA;-#Y $5<::zC:S+-`|O|i EIXGd6I[ !t4Aag<$֜)2_B^KE<I σMRh ZxViO DOv}׻V@DDA>CDLQ(EEJ"OvioIENDB`Dd^f'\ T  0Vh XAbb~8Pmysnb~8PmysPNG  IHDR^^gAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_YIDATx] d2/ H>%|ם`[U 3ga`,_ρ)/gA<m鹈Ssg?x[PE_ R:Mds& arom%f:bF3ȂEyi|~~HOC=cJ_ ޗ\^ E8"i}Vz9PdZ_ێIoo ܫ+t{KO.>o 5H3xՎ}r>}}ܗ/aPK]b_ӿƁxpk`4E^ r[:gf$~g'R/O=?۽|e>_ϫB`/Z kNSBQHR|pѨA6"B5Ï]Noz;bZ|_mv4yV]iUZ[; Tyj!:al8s>HL.rGo87T$e8vM Yw4Pphn"/ŧJUYMm`88\o(Uz6972&j&3D8bWB*(E@O򭏊V*/Y8]x:oڽ2A땖@6]zZ iNh^f|]k=E3";/ 0fm뱗Tk8k6GcyCZ5"@B 䛂H`*MdIN&Nf+֑ρst Yu/1ѧܱ [t\sԈO`F"Xhj@mY R/N$&pT  b Sf]LE+l?K,C]~n}=G3I[EAKEBqϱdp$L' IIi$3q](.͕[ *'L&ki'iP0I؋K:'x;+kZWHw"ub:@W6 ,Δu廿Ŕ)sJGWt(i  `A> ${-J-?鞀 F@5$E":ZG C#uNh1-3J(zbw\#ȯI|u0.[c,R!<(ڦ+F:LwHBbI8^Bk;bՈACWagAsbw9N\ƌMCɒ@j!<}M<}SM`L7| ]y|߭ bMo B_Q+6m+='m#%+D]eAW+乽4ˮd09!9lߎaW` ǻ,kj'x K:n 2:ýTէ<χlӰ걐Θ 歴|EA*{`{m*eT;=lRK0/mR*뭠E9@ߏ6)rPn)!Gx/20]\yg+~{@7KvuT,HfUU($!U-{0Ҹ&C2 & G3j"Av7| N.6'Yz+I5jns+lr/gjwΖL_+ ;ps9 wv3-*ROߣD06Od뀤D%˄p{ KLIg"N ` .%pg7Q׏Q酛[{eK`ka,ܳ @{Wu49C2~I{ 9MF<"@S-4&/[&)jx.pX<ӶPmހX^1H5,a۴ШWug8Typ8SW9fs˪"ѳ' kr Pu/  ^%WQVfW I;)oΓ4q_Bˇ^"ĔkAfa?Y"]x!+N٭Qj !h23@kCv/oA53w.ah פR.bH ~c=ʳUWY2 /㪶1yHR;JTb$ NR\y3boLw_n*=ӑ#0,B;Bem U ^ hׇYquOno\^晲N8lh_YU._B1뼯^;ahy!Zf>kcU~! n%Nؚ&Ǡ+Cޢp e펗1VDbc:argTU߃ֹ[;jMʉL1OGm%5fr˝#/q"Ϛtjnˑ)Df~z5Ȋ{{j\Oz}Xd^\fiA)E|W a{h_ʧOXgrD(?o% x~^c{t@L{Hʴ%E3rȿkxPׯD4^lMrVHM3Cj?x}d8Io~g_\m{C<./y Cx)x*  ZjH6B q5 --6$`TJ͕F@o7jh|!,^ 8GZk2fVGriŠ!y}t=9^G{*afK'Ld9S|j]?_\&tHњT"Ehӹ[5b#,xE>N×ƖoV]AQzXynQrz^^MwS \Y! ꏫO'tC$yeZepniHW^3O'wh3_i>F% `SG[jK7){aYsS 6G?Q&MYzun3W=J%ws.6n#d+'4I[5G?zb>4&v-WPQkr.``x Bӛ\tkT -fCnYQ( Ix~ V#~96}Z1/!mB Pʙ/>CmSj0*9˜y"p31A_ӪfmKt(p׋8u'eXǗϲ/ }xc(r{9Z.+B¦Brk%C񗅿.&7 ?#NA`tky207 0767˳A|\);"SvJВw_ ardeƾ[f-@ &hy"Kuܫ:M]Y`_hՕp;FMF m8/x%V6rGkA*dCu^:;|#c*j%3YD'F_IF[5|9'Fk5ҖRצ\nd@jM`]izPO>h zU2i!۪75Cj0R[ W1q j+^jH?Q?9NV#<1`+!p+m^h>b,!I• J<ݡ ^/b47S%{@hK &A09TMF'0EpiJT7w% Hg~/G P "iUҵCM&Y*r.u {k $:IFh cJ"NfJaBɢ _뉱IR0ۥ>*ݬF+4U*_NQ*{U>_Po'ǩ8-U}LURgrX>yfd}.ͺN$&ȺXTLlxFIz1>>Wәc @67r鹹FɣwB6=Ȓl'jd@gakAiAB?NAxѫ3ۙ2C?Ls9 3S rM+k8P"c$:• e*B*G >jW`DLmT㻚8QGU1'5z3Ɛ_lI8zꨱO#Hg_F48}kWã9k1-;{=X'(ktYd!9NGt:y Ը 2al- 7 GxmE=]<+Wӟ 9r)A.Sx 0D3*&p߉SS9N7CtCvj yT=!¹hr_ E(Tһ+J4q4"+])vz|)} ?+.gu_4Ϲ"szZNmuo]H_c\ܗ3]S_)r=q@}ڨzwc1855렂A6W }aQ_"ĸ{"[K3w%T%N}CZK_ި`VA ٨E65Z|5FwQ>h9ʙSy%{˜DW!a(A."n'"!])v*Wb].|[z;'>Kvw~_,p>/W?̼~I }4g~.`.uN#Wܿ8L;rB pRKfg93q5r2aㄳOs賜?HOq 9ݜ'<ў[ 7&2:363o3z;oD5 NOws4vۉc:NNrz{O|?Ig21#y=J6x5v:t:;|ƗbcV~FRo[@> c99F׎Z|w59$rXcߚN+Ze |~Fmğ1l=2[8%## I>%MLK)PnS\KWgqv`);و;rd#(R#HXFIFg~^T!1:J }\:uz0ƒOE6ZVrF1#>Ú5X{'dɌOuLSyBqMmCron3tr:J?YІlf_ϸ&3[-t[MsK_b'l0o&z`= Z'?rº)чaZw9촰v,tU@%jmΉfNw810bzȩэN>DJ1|m:M;T@Db=^s2݃=<愐lC, FL?c/;QWj9ǐl//0Q00!-rGG'ؿ8_?3!? 8NܷY˷M漅8 Ƈ\5Eu~')?y:V?ψSg?NԈ:FX#Q_9UF :#S:s'bYD3ǰ.xyZ| ۨ^Ph-qtq4KGkVks3E\b$+`K"bg"p'lz5ZPAJ+>cDn-æ [1N w\V>L wlcǜ;%ڈoX3s_؂ Nb:Z6s}37cwB6 'La?:!gDrN?:PV%Պm+LlgP8a]|~c!MOfc3S Իa 3B9F c5UB'#32.9&3אjX*?k`y+>2t˰_ℐ 7J{cd>'ak儱 n|7~pjq|tjtS۝2d#<]|nw%ND%~̜'9%z/! Gy1_C={Yr"U%#CDd&(<  C AbhLYؠ %/nhLYؠ PNG  IHDRAKgAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_ IDATxK `t39{*7`6FR0k[qDŽ =  Įi`pIͅ!E\BҦpC0~* /{.ojBP]&EP5Xzc]AXm%2~,, xɠs+ 3g2m}=c<T1<乩B"@ , XH5CM{%: J!G ])HuU-@6/M&)BYPKID99AR oMUD" Š~yh6";)։~/K9,NKGRK@htXDGFIENDB`DdB  S A? 2UpUb h5`!UpUb s, the analysis was conducted for the most representative power plant locations and most probable generation technologies. For locations this means choosing flat urban areas in the continental part of the country, while for technologies it assumes the best available ones that comply with environmental standards in Croatia and are considered to be candidates for future construction. The analyzed burdens relate only to routine emissions, while accidents are not taken into account. Since air pollutants are transported over large distances crossing national borders, their impacts are quantified not only on the local level, i.e. within 50 km from the source, but also for the whole of Europe. III. THE ECOSENSE SOFTWARE The software used here for calculation of externalities associated with electricity generation is EcoSense, developed within the European Community project ExternE. EcoSense (2( was developed to support the assessment of priority impacts resulting from the exposure to airborne pollutants. It co (`\xS=KArAHR{`QlQI'X#W[k;1[ys+zAht"& +0E1+E&;=^ *@B"AZ@E4}W2IJkW4 \qAhqD1\@[I H+I)y/Cxȵ|O3u5 ?+OmJ78.j /z wR6իY8١cD*o=VZ6Jr!l_ǵ1,9'nx_~K[7'GcN٤Y*EV{˻q. ~>wuij8v9. $f@# vUC'ڱyS9}DyK _Ref450279940}DyK _Ref450368150_Dd$Q <  C A"!q*zX1hu$a8@=!q*zX1hu$ay[>qx] pV>?P-cT@icx@"U"AKRD P0ja0T CLVQ 6>Ukj uZzs{ror,{v\bpn:bx$GN6@)}\6 .x@0G s0d`D GJ-IwgdxRzpʿ ZO̸-t!Wb7i|9t3Qِئ1͸ O.0b؀ Y`LiB;2i-%,+|}1P;k°C/NG>3ߨxڞ%]h2N_73 > > ]iSځM\e:\?z2*2e۠"Sel ^a W 51xk ^g: o0x -ۦc6ڂ%70cϏ#W;o亜 0xK > > Z֓.#E/2x ^a W 51xk ^g: o0x dpt=fnj'`\ n;C|NH~4'}"'2~E Av睊!\}n0a*s t=0]*.‹`_)˔`tbCx$XX\31T(.OV\W*+«&[a}1 qe~)+-| ^ f1Ɇ# _r2g[WDXp^h'.7bh#,lK.@>'yͶdsƓ%QL}ll9&?Nq3I1<6e+6VŸG/z,eSNFnUF/粤2";Sa:!|?[VuLGXznTAljT!S<;!kvj7aW'Sy!^pmQTY ~Pq^lJ^lU/+MuQ~@L KlSS K0T)[ίŖa1r;Pބ*>O:mO|Ƌʟ_ CЧsNٞ~?ѷ|OcD~lԇ0eLe3cHVX9Ч\Q\oS氶J/bx ze+6U ߁-vsd*\sП|Nm>߯LUuN?m CMeKЄ!lEd{| џ }N';/D/D.;F eF0-6+Mu5>Ce+|R.KaS*-B/gM.8 _Cѧs}>_|.t<1mG۬|/k#|- :DZh}Xcm3D)ok` [&Ka; ߦllW V#|'ݪ,, o"Ҡl6UƄ.~Les3^VuO ?OT|%7碟7,jka&t=#sz6hZ#>P k:֍Þicm#VmE6M2ڊ# 6h+imVmY\"ڮcm h[n4ڪ"&Vm[BcNmcmwןptkv/1`=~XЖ7n7_m= n(ڶ'4k{hgYF۶hvHAk>d7}\6^y_Ԗ7f c~h1cpc=Z[ύC%k&{~nuwsF0/S<^ cJx7ՙ}(a(1e\?GIGSSy@Jٿ;Q[/޼RSJs.%Y2L;*q;kQ5o/v{RJs%bNJ\o+^\[4SyK:/.SDI, Sz'K;kQ6CY LY 17yz?/ b<”;`#|k"A=w Ɣ58Ɣxo$]cПb<26 urDHḀx߈)qS~')W`<|k4Q9럢oŔ{/[lji_)W o'JgJ6Ly1~(* ǔ^Ϸf%\ݘݘˋ֕ǯj5~5`;8J5`>/[{u3nW!c{^<·>U!w5kĔ,S>15(~j|S,|žu(͟g&LV _zqo-xۏQZk>R8Qc$JIGc#Y:E9uN2:# 9,isY1Y\"b:c ʈ$, 3{a#Wc}1I{dh=2#?B:idL餽3g;sX&sct>:5:k#s |1Ogκ|u>otnsY1Xswtco Ith<}:zP:bG\,ib&y

js ~qbUxwpuk!2A;87yO Hw}L0> 70,7Ŕͅ(|#$9s |]SgiC g瘻XKkf8`ΞKǜ8W27;2wMҼ-x2oIyʼ3xJwX ޹̻(yZ.eޕ{ 'og5&۲3Il? ܳ'\.4պ}w#h&l'ў Yhkg’_ }wT"w1݀|w9)y9PZǝ0}N;s,킰);.,3d@=m4?c> SƲr(Ak1[8킞uoH;]ŸE9Sy>pGk}"p/Fhޝ>?1 |܈%7G{m.JCܚZa*K77 Muvd?}&#eRy”94 S{ֽD,W#=P{!$oKe-\0 Tze Pv\w֑.jG/_*iGowP;紎E5po*Un/l h/KQR(r"ͧ|:T^miOcrI)r~+k3!ӥ=~#^vV[є.}prNC ].+@k NcR…Opz pz>[K_'ʀmZS~W*|)) .~*)o?M/P8aR>Qi|y '_~|)<;>~Opꃦ/|3 +|[fpOo/S~_/O*OH>*\4=kx=QM?&O/;&D}'jvn"M64Q+̕2O ~/k]G=96b\_?\?NWmȹV0Ir?.O洞\& >igqo4_j_uL~/ |<ke@kw?Va4%z癃̲ hLy/6Q?hЅ3*4NIbнZC).bRFT_8oׯ-i&ZVֹ&@$8'u)}_"N!DM)M*I#ÿV=p'Ã[s>p{]ܞ߰kwZ3E{v_'ձ;2H0G nl۞Lך&=,Z=m zDdrH  c $U A"n^U$z2r8DL@=n^U$z2r8zo!25)x] Uŕ>YDM[ub3ƘL&7ܢNel_}ihYM@Aeh(UW}y{wH/sN[uNݺNȯA:”1HvL<]T6?")"-%r!59ւR ӐZ!-0ie)9]$ϵ_A:1~hʍaxŚ)e tpauQw6QǏe0ǭHF: (Q"T|\VF"m (WZTWiyaSS:([ۚMYA;oO']9T7TjIjSxH?߂4+R~`Hqog!HdA'RS"oSP7A&R")Y sL((ϱueX2;%7l4|Χ|C!6/l6Q,<3;J2H}-._Cz-SC)B H[=~4@Oygfv_r@_A)i뻁3_c$3Nꔿ^BG?YE~[t4xxT+K6\?l5fKhJ%%|N]W;uUMWV8?ۦcl^H., B(k8 ?v"}5]EYpC@tq67x#Tt}URM5بЏ5UE_ U6} k*(O@ʦ?6}W@OR9Wrz7I6Dǽ3ئůi6EpMטqlгAGpMW |LIv P][\ve}} 1ok m#D7\&"o<'[Mp2A g(0': ʆӾ}Ej'B;;vNLm,CzO([K{O2B-\8ЌG;g 1z~'l2&=e,:֊sK*GTjW)ț~2*]~;MbOr:lcخi3+_k:M prco1ֹHr -B<Ч3Fz9A}+Yr~U?Xn3:nBz+I1k$svۍvB&xICk6?ErcI,5rЀD:Ḿ<W;987c17z>:dyhl.1>L2v(eДRsԝ1J\hl&$|8wʵc1CS|;jyMcAy|ȠiiizG|QI6QeD9np-1C2qpiKjD+v4 ob0~/Ù8ӂd1iy\c}c6Qn8UZgd\p5ȭFB A!c$۸^qdrp+Q_-4᱗7",lr#EhVm/h;A=O9vs/ZKZ^p!}=)'Ocu7I̓|ͧihaOptʏu:UyJͅɅ`b|ucp,6oKg f0.8xU< rK]`OU;GBc|klXH?X^%/o#y:pPjhVD7k%㗷ێ-H)(']9fzr'l;@.5_C<$\ԏ}d*BiZ"' }L!{|/>YW< ͳ|Xg@srE/,4ilՓ^qsd֟eOàvRڎg0.V9N.?8*me%Wr-2R3BɅCoGO2>a'HOOg ğv5{Cc$oʘ 9=!h' \bc`s݁zb Kz?+ߑu{9rxЌF{(a!ܥNa=sx[F ^=SuSqbIN|r'qR37me<%Bb*hfwiDg}Ƙ}Z}ZȋQbkDj^& rGZXE9vs_1кVr~_|q/k+h7߱n{)8 JI!@.B41rs/hzÏt#醹 =\ZiWgf6vIzoy 7ufH9i;8q]4ХNn[x-.p/ '\br\J홓4xa\=0W_OGur>P<?;"|՛Tux cp3v'3e$p/ur\Lk<+]S;=Y~p̌Te:%G[ssaR $?<:pPjh^?I{Ƭsہ ('nZ{jk>D}A[^qr{M9:ȯȧG.BrO{7 +bawh_w |Su|p KK5#f6>d$W=ӒY}?4O}}}^K,b bK.Kdnf˓^{M!^|/@C9_x3lrE qbk*SRX/½kg;c q89ApF\bq˱B?=l%=^_VH?C5H/;9w Q<Ùn Փ/[0V; zY'Ξyʞ㘭*5r#ceoJ h /;{kRhJq_?|Y8 ۛ6[@cxIQp#3 q2T1F8/.ur\gd`R%=^F>X/#݂Hk/\ U+7"Ƹ'WJ2w= bxImsUK-uopr{#܋ؤu/-f{)0~3uo{=vozw~.ԷmIBrohG}{@\Yƃ}CM=C<)QS#rEA )t 1s⛍#Y=IM }wh@;zY QGK,bP}̪=ޖޛ3j~?~=H/\ U_NoLà/ĩ漢-OT<^1E ]ދмPW1RR8j-1NjٌŏqbYMB9wIWpʑK,bP]ҕj͖^R/l+UPdħȭtier`i{-S / Wc߷X E:mbxA(NNݼ^|W"ءvߛȭC"۝Dvܩr +(9Y:O2MuջpE;~3|KCs7|]%1[Q;m?l'}s1^qO11hC; iC{J??2K,bt^.CZ04y/mS}Rیyː^sr\tv pvwϝV8A/ܐHm#4xlغνmf' >1tO#XĽ\B<l1[BcxI';jغd+Fm@sr\(~\༈u#A9_^٘2KzLF%ۑ"iy 3 NV Eٚ2KY'z3|^tI< wH{79v@Io;zN5h6D ۲ɅoµTȾN6GKIo,f*&*M*M** * *f*F*&U6#yy=}^-xzÕRz#HG+=FJS%+=AJORe'+=EJ_Szү+ӕ9?zd[#Xuf p]49VAj+ZǪ,uϻr7os#u.:`Yw笃sRs^ a g?VokWDž Q]:~ ޟҿta긨:~uܔ]9uW%@~y'x6L{woS>T?5KiJΉ*SZtJ*]t%Jk.ULr+ԿJJ(}EZ딮o?f_]s! 9gq܋ W܉9}uZf*7-6Uޮ9m7~D~Sϔ~ &J*-RZJ[(m0+mG*=JikG+=FJS%+=6ٮy>gj_ Lg)=[7~+b߿JUVyJ|(Pi;)X%JMw"W)˔^ߕ^@hh^1qp\eGU5׊sd_z7*IJ+EJoSz;FJRzQz*WiN}JWvRYCJV2|($z{)IO)51q}g>=wGC?ΖQ֘G&]e~y~hh\q~3E ǕW`1kzЙ)lv8t-x̿UKtNKym ׋_ ?Mu=9GE/{NwmܝĭȿC: ݦ.qc>K|al#|,(fz5 H}"O??Ҷj[ڶʛo(bCKŲșL*#_SH<}DyK _Ref450112363iDdH  c $5  A"]%\;g@=]%\jޯ8")ox] p^q+2&<@q0(!8Ig„$06>&BkH iM l%۲dIeٲlYo&ml0!ݳuW[ ׳g={={Ͻ:D"M#_Dv]peE|DFI"IB{ۀ%Χ'J+;Ý3V,Ru8^)'QQ O-7D:5 eZWN/ȓsggP/EgTnҼxKB/܉% (- 1mWɕRr_Yu/:HmMyN( o3^y jMv}Չ9ԟ&%W?pG~#?HԿ/Q?їM^?'_=s|΅92D?KB~h9l^7l.i]=RY^g}}?~g~e2x6&wf:4'xG?k=Oz㳭;Is7{Mc([} #00! u +.&emr, un|G/oE^TWi?i4#w]f 9J`(m4 ڳKZ[$i[% ;뀾6pZl? IBN g(薹1ݻs%ġyZ9`/t/`7j/|u`oB+N:VZ=`Pz,<c~?EzϰhR-QLa)Q4i7Ojb:Gk㺳Dtt| 08<>_ZwQT z ֭/i|K>פ?$aqlJ!l}I > uZFC >Y1F^7-74lֆjmu>9HΉ4j/6tvN{CN@tv3ߧO2Q^y8<>:ߕO]אnQ/'tv1c7"Zz'"51SޙQe2 zON:U{/¾yDA!Q}LAJȵ~>5Xq18׺5؜IuH't% ڛO?s"Mz}`o8끓Q=vt`+tv{59p'ݯN OJ!ݿ|W"a9| {DsRh=c:Otިt7tv: Ѝr)`˾|0藶F/85/<:>2luF [b 5z= Kur_|r+(tryؽKy)~`CpvIaA >|u`oeA%o|&7|1; XuIa('Ds V^| 1#41/l{NA?"ZyͽP2/lzQ f9 zόVtZ, I>#Wo)X>?h9C 9z<):9OI.Au&|9R+栄`zwʙ'Xhv<⾝gkis*J黾P1~T?ܞC#ԃC ^ljT2'X JM^/5ڞNxueQR7i1y_{SDzW(OӽRJa XYXƭy\?ޤ.`npHkb蘴gm. (uWFk@ƳY3-1'zwkUh-5x6kmLaHTY:ke4 rRlJ%Gk[@7Lp'Kɬ}<{磰ɨQqURV῍0J('#b4c"woOt h5 Ti(tZLȱ,mOhK}ݾ_Y'3zRcXpVy&g3n% }o.@hy} {xtiyKxܨGGAo3zc:m'$P30 pf f=bMoҏVeCZpZJ[llmtv[H!gl<+p_No;}l<:w[ϪYa<7b{.}J t{i6~s'?xŤ%$'~&o߯|@ y(!\N=IRYwr=g֦IR^`֔j?M 9j504pċj'g )(5yS~:ə6LE)eQT7iʙ졬=T]B?ؽݧT?vwFxb[噜ftre,'g0 Exg,_f)>$i&yR_~OU۾-(lbPX,[bBWgKo{B[j1yy7NmW-֢iM:`f۴{T36C_8Ha71GT{g'8="Ha7{`w=SywT^}X[d(;uWE{iyϽ&>%6Rx{WYR?R:l{:^nGG}:~YgU)u YgݭtYkw)u]JgoJs͒U^ߪ<;x, 7sرJm?I2WޏL0&˟ȟ?؏|oKǿH7^1wɿ 3 c|?.ȗ,U)'@%/療<7^1i?eܨH_˗T$H7^1?A3Eȿ$:%ǐgH؏sxI\]%GL^nC"?1e" ^ >noC1ϙrHЕtm~k~tϗO^c5>Q]ia'm{vnZ{^ՑF?ӧ'}=3+'Ǽ-'m}7 >x+y~é7S ~Um*se{Lcwy~}W1%~cX2=-/ȗKrPRr! vvz)2K8ˎҷ}a2|.<,gbg>~^Ǿ!ùų+yU1y66ovw~1̝O>oi{^6b0j]?P/)g_i~nu{_k_bk gpL7xmwɓޯk./{\-ܩ7NZrs{,y!<Qz 2;96 c3[* ?h?po騄`Nಸ(c%xOD*tt8UN@!Mm>}%O]Be] SsIG*L}1>,?xN鯁ĚaEs$A6]}MI:+mk@_L'$ʳt$aLE_{}DyK _Ref450144800}DyK _Ref450354590}DyK _Ref450144800}DyK _Ref450144800}DyK _Ref450216288}DyK _Ref450217149:DdB   S *A " zj|N veQ @=x zj|N veQ:X>1F x[ tU=CT>~%VՊL"(DEXPjg |c (A>"(V[ZкX֢+gM{)63>7".@!0] pK#ʹc!Lt[z"j7= TM0VJ4%q$2s},T'Cg㝚ix-NTR{.n64 }(؇>SCUmDmoB3kum\ϵK[G#)N19uΫuJSB^Gm(]\]./D"v}0{s8~Xeq;_e "~oٷz%}g/e}g{xгzTzs(o\}53ҳG[5n]{ԸuQֵq[W0Gz۶GwR'bҌ:(r樜1?9&w~=Er끍5tik.^z^`,0xA}h=v(UP_V4ԅ6\ E V;,@O7&"gR mRz Rev%' hWnB k?v~HVx .ڽ+'Pk_l~A ZDH3=P{.4w"mhU=u'tjsi7۩3n4ކvP7S Tn w=HwWWHUQ-jFFŪUW6)5Dk?ё(XSh=ok즠m;z:-B,>pPfF~w6{{wDۉv6ڮ)ڮ`0؉P]{Oцہr; V{/ ->pPflG~{>}цۊ2cB@` 0X|-jy R|6؂P ц{x7127F e&7ǀ7 JF8Xi=0^|֣x7Bm)|híCv (m?4HZKy%>pXP;XCp/XPAJtAu!ц[2cB h=5sXJ`T eFV@Z=5v>g.| '侤2c>}Ih"=I|̘P HOm9=5:>V3HmgPfF~v=HmYXg5P{ 4ʌ =4KGn]A?^9Jц+G1GLCzhMCQ|yFsZhMkpS5|zhBSц{ e䧄,hMޥ dg I U~&$ʌ2NLBE|zJq?> \) Dw6Dj{`|hM@1X5YxƁOj`- >pcQfC~\+RcG{ϒ{塢}a1ȏ á)AhÍ*7ՎQ 8ʌKR׊{G&{)GǑ>&~WlGINݹ{"e^!+9Ʈf05]ar]}*fȟ.uN(4k6-?=5}M7vνpC:1 {bzrYvg˒n^;_-s\/L~ߎ9[6 Rǜ17\lx1-RDq-yD _&8_\/OMD!Ŀ"M]3e%~QDM|iD3:F Ey:7:"Vt1Ve6_#[[&񯈉_)1-1[ FLj֖I㱈֖M/[_g%lKԠsLFՋ5^xO{@Oi(v|R1}y¢FYmú#?oD~noT i*[q]r{|/PjP|wXruCM (?:mΜ}'o N=z/E*Eҹq\ߖT{#y7cu;R9;8{3E|$Ëgo~Ζgryq݉}|O@0 ((j6oSjūtlƷ-/ Z΀ljjN2h4ծY*])ZLUЎ Uj!" &xr3|< ^PDӚ뷫<8ͫfe6T͋Q0n{ ~q˶ӫiDJ@:-ߒٓeڶ̮uYߴyᠴg7r{)[[g[Aߏ~Z?ۏ\Q'u\uy2G._\%߳s}7Rj]離Kozm'pfگOA9Wk$?Oo'QdϏq?VVW |ߝCݿs_k8AbY{M wFHOMM,}DyK _Ref450144800}DyK _Ref450217149DdB   S 5A  "kf+QL&(Ə@=kf+QL&(p^[;(;x\}TXT0~W0p<#*AN=#H {ȁ|hLhŘXeP2j+0&jJE1&s"1={wvvaUWLyyffH"m1!YG P=/X*Dx< )4 /_QȏUfDg|Ti S̽tST"ؐO)i]85m!qd^Rd8o:CB1NTLQX%1y/KEF1vȿH -+;t`;yfh#ۤȧ9zG^ky#;x0&\vg3u _ߤʓ7_n^ט&RIO=CW8 \ktR37b,KIL'm^}J=|RI!wbɋNڼƧ*ObSg1"l(c|R!6uKi} _o@$6nCiJ~>Xo ;'o Zc}ocTN%7C?BoE0/}ԕ'k'Nn=z<)0,¸N4ٮb2BWDŽDIֶx k+^ڋ>MLc72?¶:^OtSϐgc #=q AMr1\gq vLlbg{Ķ؋nK^zK}3i7~'{X򢥄}g cƣ c oWI;<_؟߰x.Scc>={u<ϫtq;7c?cc ccc ƾ c?>G0+M|G{u#Fq.c (GuXYAq*d:7`Z>בu4G^y#uq^~u=-9KRG#ԑq'LI59&Gّo.C;Bw!^ck$ܟW]|vԊ$dY,6@<>|㗢}*^QqKLťRǥ߮oK,Xz~ĶRێs-Hs{;o2?;HcM8gDXyӁ͋~w(6wX 0ؼ@z*DHPߏ_-l^3\O5' 0ؼ7y*fDO 8\XiyJ LHk۔V8DŔO8~߅eKŔŘV)`,)SEAf,c̗0OXL)/J\m)R^0<lT_?Бz ߡ&Kz ' ,֔m߆-mJ=T/Í' ,֔}—q *3 DŚOj=ѯ7͘' ,֔}—,d;7Ñp[2û ?QԞ,l"^:̗0_<|ofy V+b~ 0_|62z|#曘oε3Zr ZH$;o\H+a)Ŀ%/{-nH{ε d 2(V@ );Jm/ZOg _:7f&a6?0|/0?`o3;y'?f"ay5o":;`2AXg ߿lscdt2j+<}Cx_[P "@_acHGy1Dr7<Z|c;XOi~dS7Z2Os?b>%N]${{zn;cǃ2bMu?X)ƺ\v0{<%3-bh;?dczc#-\Ӽ]{'g{&o+o{kfeěx{cg3<6ڼ!s~6D 6τsznfy V+r0^| 1oc~+ۘg<`72`ɩw2w37 !,]t>(! r$h`mQVv3{ F\Q{ƞz^zdW1 ;3 sQo_B85?7H?ΥCC79md=ӝ}y]ZZٺcox_R7*{w_BT=WunUW:χ<5恐/b$}~0wвx>PLƐkwEw|uȃ!*|67ZfV,'O1!3uf7-#0# w hOږ{hue_^L$>GÙ|>'+>ӏюf;:^b6奌\Ks,)^Xn vA|>cִ43vrW[E| gooӉjCJmq:o)ve!=-{WF,#G|U (үe >'&>F5o!⇈#~qxM1 q? F_4\m !5\mE$\lO#' d+_DjZgC~p˵2\m2!lۉ A|;wj+8fʻBpwj+!CpG W[y?~o#3 d+7v~lkk˜ni3~^^K^O)x}/bx} ^Ex}$׷Ok nw;7{3~x}G^ߖo$.}Sۉo'.z>P.]KKĻnjxqѳԶ?j[}k>3HZ~9v~P^߭ x@շԶT{#7ێV^Z/z > 7&V}^}^߶j[}_E=׷}>S ^]w'VrY &mO{!{flE^d\.x}2\m ^ =oVE6\| ^ߧ =IC>w .z>s$V߶.jDK俛x7qYx}5\|^g 'O\|^ߧ }m6fK{ ɾI۟d=]\g%ψMC:7||m畽>[>DMoMc}{N|+3#+xC mx&C2WR1\d纚+Crةn8hMyvy~|scS?*:+2'Fƿ#kwJa7>x!{9n>wZE148bcWj|Z]1?82kb狐oGƼ29!`|>Jy0)>EϦ\ }N>L9-Ϲ:$!Duʘ^K^Z[7c(5vI1+<}$^/Ǭ2)gNP쬠XV޻&6N{wZK}$.U]_ذ"ڕlketLד%73mIGزSϥtc1=[BRS TM9)kdEϔXET:Ȉjx?ǩڼ({oϡ<;/5H,>D̋)Nbۯ6OObQ鿏I8Ol>$Gb;gT)w{"^V&*+nPLR~](oWxC:_TZ9묥YTsXW>} aa$q[js3%-GP)goa^E{I3{(=3 ̫O~R1&~Z0fS^cX}2:ڧjQ|0x7X?WTfbXTqɱWK'{^g&׋Ui}㺟I' >i O|2 >` o6x1k)ߙf ~o7x iNw6xe ~3[ ?f >hA2.?i' 1G 70!2a610 0I9z;U;='(ݟ\?s%́<|]gCx~}wCϩ/q3 gg[>3o4Gx{>@g3N}$pwgUξ"p?$5q!x@3 {>HrZsgo;{V3ߜS_)p? xɜ`|ǝ8_8ɜ`|_cjWY뽽ҵ.WIC~h}@Zh}owZ6h};-Wٗ}~h}CZ}~Z@['RǠ} ZG}ZG}Z68yZeؗ"_ah}wZEh}!h}Ah}˾7S;Or+iLw+[]wZ.R_%c/-_˾~h}>h}GZ{-e}Ғ?`_{/B{ZK}˾Է?`_{jjjnַٗ^unw%oƏ}Ah}B[޿/-ٗc_uh}נOA%>lp$'߂ַR߯BUh}Kh >np~Zg}Zo@ h}F]DoqmlNtڳve3 *rm%̝ڣVN77=ܝ{skݩWd'ek!9Ci_CiMU)[S<Ӭ[< YWK֭ZCxQ.񪸄Ƌhr1{}sue e~3V;?T˴oy}hr9+=j˝4^2SF>5'/>rٵCL̘9m9q [mc^FsQIo'<_R' z1yϗHגcfg?Bһ1XmEIys y:g'ty%}Xz  )yݚ7M )]y[k3{9{CWz~/W7N5[8"Jl&߮zVB%-={H޹}e2FCye]oRWZ,JKMq"$seGϟss#ڝu8?8VC秫&~ ]"xe;m,sVEXXt l-H?MNqlsvhJSBEt!ޭXXl[yS,酌rX챸qY "b07z"cbqEZCXŹT^ug.syrH\oOav,2%q^2EZwZ911:$s(e͋ɗj"MFXd,[,.޼Xm>:_ʵ@)Klx.Bs8.'ߖ˝Yꦴ,so~Lzv4ی[3xʍ` F]͡v@1cӞeӻ+tf`:+Frx*?Drrtʿ^*]|cM=աwoD@\Gw>@*7{o9wι3 ml1ٸ V.EZ|QBEc{)_%2>KEާ mq\.oVa=ƊDK>|݀BrPlO8~¾}>PRɸ+f؅8/buY^ ^x_s~S$!s:7~㴟]P(|@ Tx[ިF*VU RxK^kK_qzu §i =+gsIG[xﲈe_V_PީN(E oTxk^**TE/yJ^ S:oP?YE[QVoU BO*I7*Q[O oVPATs NG~D~L] RIT)Rx>Vi+|X UYs9o-$8r.uȎ \s(ρ/s2揜kMї+ pPGI3g1ƾ-pv c7.ppKq2b뉓T1 t̤sM cw5O8nj71霓*f[1SI3ަnj9fcnc c{{{UpxAc1Cc*f|5njA_=>w=>Di]? >fp }{7 w[R8nWM[?Rr,<~\}X>[w+>oyK}c{'DZԷ8R6p-Oɱ7Wz.g}j.ןcoYK}W{շ ʱԷX[_K}coy9DZԷ~ \}7p4~\}wnp}\}WR\}Wap}\}w.p-߭z>(>6pɱԷ9k5ONN^ַ/RRK}c:p]9#RrX[8~\}?w;W#,> 0x±/Up*DZp}\}+_gycqp=>Ym.6Kr9Gy{5 j0m!f>{h[IrCNr}rU r*UJSe-\x9m$&C&kxW#xȩXWC@X , W'xȩ?>^9 xiX@킇o!gr}]+xk-\o/9M񚈷_Z`>~rZUj-\xm6kxmk<[ ,k'^!Z`>^9#xXC^CNr}^ roP3h-\oxC!kxCsyկ04`duf]wԽZrswZ|Q_བྷ}_s}S:埸h? XqwȌmt0jp8go1=qo/)'OۿïTG$87л>lLs-:a3iKIK>{T+Ak; 1,_;8FV77ߪfχOnlSWx-f?^K|OO,cl'%}OK1ryrڒ9{)+1rVzrSΓ1rl<9c\@9xr6ȹޓrn䬎ʓr~ݓ"FίyrP2OΒ978WsjmL9n^c?8}~ǵ)o%BZv/x-nqhm>크[{Dy*Lݖ5r!|ja-=YxM_ ֒xn% pu]]dtT};r'Lon\ϮƴIK㈵"_-gXo8Zd,^-soTuE\`Sk`-RխOio_zߡSx\?\bv4 Rg|0}9~$W!r3{g{zq;Gz{rkx8Ź·{\g?/9O;6FtD6Jc&!7OJo :|wf m\+<^["c.ڻ]&e b/!/#|)ȯ UeW*ɗ_C|%At-0Nj 6~ϙO NV28k9o^]+|n ?>N/v$En'ɿ@O^}ɿD~ɟ& !g?K~(sȟ=Wx-qljPoGI9p&p7-LĘGDZ>uѰ~KO(@يV|P|2g_rhciکqYs1WU*Ks2&x`g1;εS1}W&~Z3c1jrr?!xg&'x?f1g(·>y]^c9Y`[cL w:A`{ `{g`{w>^ ׂ5`{ |ϫjloߒQ|ZZZZ_*T/WsKaU\\*e^9*HO0EcO}<B(̓!Kv/JqXmxJfWtɼg]]O9- _7|y]MpL 9%>_}ܩfK[_yV)))%ɑfW}ѝݪSx"sigjj_7rTҎEwc<9$Mv* ;f:tDByYpL'B˭&w㚗|bkYErwBv}q*sNӪxޞ]vJ]U^fO.&[zuh> oa٦ ׮0۾gsUpܼٗ>RZLpf+"siWjq1Zg1:-Qo \tZZ Z]E|Nz Zd.->q/ZDCc"izk.'"kТn)O;yuZ>O*"si1~]ؠnc"i1q "si1~]ž ZiNZT+-K?b-EH1_4[jq|2X-^y_luir_Sx(:3BhV9!K%s U /^&BᗄW aa"aa#ƎNEbvCZi1~];~]N7_vqIH8p0#C#L' NI8p$(G Gf!&K8p<‰'N!J8}פm6r~*ncorporates a dose of uncertainty, due to atmospheric model imperfections, transferability of data from one context to another (e.g. extrapolation of exposure-response functions from the laboratory to the field and from one geographical location to anothernstitutes of several databases: technology, exposure-response and reference environment databases. The reference technology database holds a small set of technical data describing the emission source (power plant) that are mainly related to air quality modeling, including e.g. emission factors, flue gas characteristics, stack geometry and the geographic coordinates of the site. The impact assessment module calculates the physical impacts and the resulting damage costs by applying the exposure-response funct, transferability of monetary values from one country to another), the fact that some impacts cannot be quantified or monetized at all, etc. However, there is a consensus among experts that transference of input parameters and results is to be preferred to ignoring some impact categories. Focus of this analysis has been put on the effects of ambient air pollution on human health, as one of the priority impacts of electricity generation. Since the impact pathway methodology yields rather site-specific results, the analysis was conducted for the most representative power plant locations and most probable generation technologies. For locations this means choosing flat urban areas in the continental part of the country, while for technologies it assumes the best [4@4Normal $ hmH nH 8@8 Heading 1 $$@&5CJ88 Heading 2 $<@&6CJ<@< Heading 3$@&5CJOJQJ>@> Heading 4$@&5B*CJOJQJ>@> Heading 5$@&56CJOJQJ>@> Heading 6$@&6B*CJOJQJ8@8 Heading 7 $@&6CJ<A@<Default Paragraph Font>B@> Body Text & F mH 6"@6Caption $xx5CJ.P. Body Text 2$.Q@". Body Text 3CJ4C24Body Text Indent~~UVefgxyz)*+CD       a f^_`opq}!Y%Z%[%v%w%x%*.M112233)333A3B3]3^3_3`3a3t3|333333333333333333333344444!4"464<4N4X4Y4e4f4y444444444444444444445 5 5"5&585B5C5W5X5k5u5v5555555555555555#67D7}7~77777<<2<9<Y<|<}<P=u>v>w>>>>@TAUAcAxAyAAAAAAAAAAAAA BBBB#B)B/B0B?BCBGBHBRBXB^BdBjBkBxB{BBBBBBBBBBBBBBBBBBBBBBBBQEGGGGeHJJJKKKK KMMMMPPWQSWqWrWvW{WWWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXX"X#X$X%X9X:X;XXOXTXYX_XfXgXkXpXuX{XXXXXXXXXXXXXXXXXXXXXY YYYYY&Y'Y(Y)Y*Y+Y/Y4Y9Y=Y@YAYSYXY]Y^Y_Y`YsYtYuYvYwYxY|YYYYYYYYYYYYYYYYYY,ZZ [ [[ [![\\\\\\\\\\\\\\] ]]]]]!]"]+]1]7]8]9]`9b:b;b}b~bbUf7k8k:k;kkooooqo5q6q:q;q=q>qq/t0t1tAtBtCtxo{I}J}K}W}X}Y}}}}}}}.~/~0~~~~~      gg g g g + +L+@+@+@+@+@+@+@+@+@+@++L+L+L+@+@+@LLLLLL@L`L`L`L`L`@LLLL@@@@[%@[%@[%@[%@[%@[%@[%@[%[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@L7L7L7L7@7@7@7@7@7@7@7@7@7@@w>@w>w>w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>w>@w>@w>@w>w>@w>@w>@w>@@J@J@J@J@J@J@JJJ@JJLJ JJ@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@JLJLJJ@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@JJJ@J@J@@;b@;b@;b;b;b;b;b;b;b@;b;b;b;bL;bL;b;b ;b ;b 1t 1t 1t 1t 1t 1t 1t 1t 1t 1t1t1t1t1t1t1t1t1t1t1td7X?KT\`cm>uRVDľ\&(Bcio{#&,38:CJKM  !)777!888B999#:BERFFFN{[[[$\O\\]@]s]]]``8asJEPVDdPīh,ޭ:ll0npR D".">Bdfgjlmpqstvwxy|}!"$%'()*+-./01245679;<=>?@ABDEFGHILN57y889};EFO[<\\u]`}fKehknruz~Unknown Tea KovacevicHELEN MARTINEZuserS{& = ? 222<-</<@@@@AAGGGHHHMMMPPPPQQSTTW,W.W\\\-^U^]^0_X_`_`a aChkhthLiti}iBkYk[kdmmmnnn o#o%oEq\q^qqqr~t t t:t tt t tt tt t tttttt ttt t tt2$Jh/,2$ P5#"$PmZEYɄta"$H'.#3I x"$M#ܮt'\T "$P߼h*ڧ "$i)kt*"$kf+QL&("$ g7)G[{8q/"$|>|=̮Dʲ "$zj|N veQ "$ R2De"$E?_ "$ 䄑 qHaOՃ0 "$K)@ (k"$n6a^^g "$$X8fNIi"$q>qEq_qqr~~~~~~S& @ 22@@@AGGHHMMPPPQSTW/W\\-^^^0_a_` aChuhLi~iBk\kdmmnn o&o6q9q>q>qEq_qqr~~~~~~ Tea Kovacevic'D:\d-disk\KONFERENCIJE\balt-publish.doc Tea Kovacevic'D:\d-disk\KONFERENCIJE\balt-publish.doc Tea Kovacevic1C:\WIN\TEMP\AutoRecovery save of balt-publish.asd Tea Kovacevic'D:\d-disk\KONFERENCIJE\balt-publish.doc Tea Kovacevic1C:\WIN\TEMP\AutoRecovery save of balt-publish.asd Tea Kovacevic1C:\WIN\TEMP\AutoRecovery save of balt-publish.asd Tea Kovacevic1C:\WIN\TEMP\AutoRecovery save of balt-publish.asd Tea Kovacevic1C:\WIN\TEMP\AutoRecovery save of balt-publish.asd Tea Kovacevic1C:\WIN\TEMP\AutoRecovery save of balt-publish.asd Tea Kovacevic'D:\d-disk\KONFERENCIJE\balt-publish.doc-M *hh.--M-@ OJQJo(@=r=rl-=r=rr?@TUgkwxyz(*+0BCDS|            > ? @ ef]^`eno|!}![%`%u%v%**..L1M111222223(333@3A3B3]3_3`3a3{333333333333333333333344444 4!4"4;4N4W4X4Y4e4y444444444444444444445 5 5 5%585A5B5C5W5k5t5u5v5555555555555555"6#6&677D7G7H7W7}77777<<<t>u>w>~>>>@@@@@@AAAPEQEGGGGGGHHHJJJJ KKKKMMMMMPPPPQQQTTTT-W.W/WY [[ [\\\V^\^]^^^Y___`_a_a a a a;b?b|b}bTfUfggggh h:hlhshthuhui|i}i6k7k8k9k;kZk[k\kmmmnnnooo$o%o&o6q7q8q9q:q;qq]q^q_qqrrr1t6t@tAtI}J}K}L}V}W}X}Y}}}}}}}-~.~/~~~~~~a&DaDaD`D`Da0EaPE`E`E`EaE`E`E`E`EaJaJ`K`K`KaK`vR`zRa|RaR`R`RaRaTaUa,Ua.U`0Ua6U`jUalU`UaUaUaU`VaV`NV`PVaRV`TVaVV`XVaZV`\Va^V``V`bVadVaVaV`Vavkak`k`k`rar`v`vavav`w`w`2`4a8a@```` a܎a```TaV`8a:`a`a`R`Taa``(`va````````aB`N`P`R`Ta|````a````a``«`ī`a `,`.`0`2aZ`f`h`j`a¬`Ԭ`֬`ج`a`*`,`.`0a:`L`N`P`Ra\`n`p`r`aʭ`ܭ`ޭ``a(`:`<`>`pa````Ԯa````:`>`@`B`xa````a֯``aa`jal`raX`^aaa`Բ` a$a0`x`z`T`V`X``aa"``aaa a `aaJaL`N`aaaaa``a\a^````aa`@`B`b`d`2`4axaz`|axaa`a,a.`0aJaVaX`Zaa```>`d`fabad`faaaaaaa`a0a<a>`@aa` ` `aaaaaa.a@aaa aaaaa ``a`aaa`a@aLaNa"a"` "a*"`,"a0"an"ap"`r"a&a&a&`&`&a&`&`&a&a&a&`&a(a((a*(`,(a,a,`,`,`>`>a>a>`>`>`>a>`v?`x?`z?`?`?`?`@`@`@`A`A`A`AGTimes New Roman5Symbol3& ArialSTimesTimes New Roman"h(9B&AB&[h5dExternal costs Pliva d.d. Tea KovacevicrͼQgY6|fwQ0Ͻnsqx>>>>>>"?$?&?|?~??????????,@.@0@@@@@@ABО̮֞ή,.06RTVXZ\^`drt jCJUCJ jUmH j UmH jeU j?UmHjU jU6 j] j[5 hmH nHH*mHmHnH jUmHC>>>>>x?z?|????@@@AAAABОҞԞ֞0$V$well Laboratory, UK) used to estimate the concentration and deposition of acid species on a European-wide scale. IV. EMISSIONS The most important pollutants emitted from fossil-fuelled power plants are carbon dioxide (CO2), particulate matter (specially relevant for health effects are fine particles less than 10 and 2,5 microns in diameter respectively, so called PM10 and PM2,5), sulfur dioxide (SO2) and nitric oxides (NOx, i.e. mainly NO later oxidized to NO2). Apart from that, SO2 and NOx are subject to chemical transformations in the atmosphere, forming the so-called secondary pollutants: sulfuric and nitric acid (H2SO4 and HNO3), sulfate and nitrate aerosols and tropospheric ozone (O3). Both primary and secondary pollutants cause certain health effects, but here are considered only those for which the atmospheric modeling and the exposure-response functions are provided. Since modeling of ozone formation involves considerable complexity in both plume dynamics and chemistry, health effects associated with ozone are not quantified here. Impacts of global warming are not covered either because of the very different mechanism and global nature of impact. V. ATMOSPHERIC DISPERSION AND TRANSPORT MODELS On the local scale, i.e. within 50 km from the source, chemical transformations of pollutants can be neglected and thus their concentrations predicted using Gaussian plume dispersion models. These models assume source emissions are carried in a straight line by the wind, mixing with the surrounding air to produce pollutant concentrations with a Gaussian spatial distribution. One of them, used in EcoSense, is the Industrial Source Complex Short-Term model, version 2 (ISCST2) developed by the U.S. EPA. The area analyzed in the local dispersion is represented by 10 x 10 grid of quadratic cells each 100 km2 in size, with the power plant positioned in the grid center. The model calculates hourly concentration values of SO2, NOx and particulate matter averaged over one year at the center of each cell. Gaussian models require detailed description of meteorological data at the plant location provided by the user. They are valid up to 50 km from the plant. However, pollutant transport extends over much greater distances, when chemical reactions and formation of secondary pollutants can no longer be neglected. Therefore, different models are required for assessing long-range (regional) transport of pollutants, the most common are the Lagrangian trajectory models. Receptor-oriented trajectory model examines incoming trajectories of air parcels arriving from different directions to the receptor point (which is characterized by its mean annual windrose), moving at a representative wind speed and constant mixing height. European-wide transport of pollution is in the EcoSense software handled by the Windrose Trajectory Model. Europe is represented by a 42 x 27 matrix of large cells, each 10000 km2. The outputs from the model are atmospheric concentrations and deposition of emitted species and secondary pollutants in each grid cell. All input data required to run the Windrose Trajectory Model are provided by the EcoSense database. VI. PUBLIC HEALTH EFFECTS Combustion processes cause an increase in the concentration of certain atmospheric pollutants that might be causing adverse health effects within the general public. There is now a broad-based body of evidence showing small but definite increases in risks associated with increases in air pollution, with no convincing evidence of threshold. Acute health effects, which occur on the same day as increases in air pollution or very soon thereafter, should be distinguished from the chronic or delayed effects of possible long-term exposure. There are less exposure-response functions for chronic effects since they are more difficult to estimate than the acute ones. It should be stressed that the acute mortality effects occur predominantly in older people, almost certainly with serious pre-existing health problems, though the precise mechanism of action is not yet resolved. Length of life lost in those who die prematurely following higher pollution days is also unknown, but is likely to be short  a few weeks or months. Averaged reduced life expectancy among those who die prematurely from chronic effects of air pollution is likely to be much greater and is measured in years. The incremental air pollution attributable to power generation is a mixture of pollutants emitted from a power plant and those formed subsequently in atmospheric chemical reactions. Complex studies were made to disaggregate that mixture and determine separate exposure-response functions for each pollutant (particles, SO2, NOx and ozone). Most of the exposure-response functions used in the EcoSense model are chosen from studies which showed statistically significant relationship between pollutant and health endpoint and which eliminated possible confounding factors due to other pollutants. The strength of these studies is that relationships, expressed as percentage change in health effect per unit exposure, seem remarkably invariant to changes in population, location and pollution mixtures. For ease of implementation, the exposure-response functions are linearized, assuming independence of background levels and no threshold existence. Extrapolation of exposure-response functions to very low pollution increments, particularly at distances far away from source, without a threshold, may lead to an overestimation of effects. Quantitative relationships have been established linking air pollution with a number of health endpoints. Health impacts are divided into three categories: mortality, morbidity and accidents. Only first two categories are observed here since they refer to normal operation of a power plant. It is dealt with premature mortality (acute and chronic), restricted activity days, hospital admissions due to respiratory and cerebrovascular problems, as well as emergency room visits due to exacerbation of asthma and chronic obstructive pulmonary disease (COPD). Here is how additional mortality and restricted activity days due to air pollution can be calculated, based on the given exposure-response functions: Mortality (number of cases) = exposure-response slope/100 ( baseline mortality ( population of the observed area ( pollutant concentration increase ((g/m3). Restricted activity days (number of days) = exposure-response slope/100 ( population of the observed area ( percentage of adults ( pollutant concentration increase ((g/m3). Table  SEQ Table \* ARABIC 1 Summary of exposure-response functions and monetary values used here (1( Impact CategoryMonetary value (ECU)(1)Pollutante-r slope (2)Receptor: Total populationAcute mortality(3)155.000PM10 and nitrates0,040%PM2,5 and sulfates0,068%SO20,072%NOx0,034%Chronic mortality(3)83.000PM10 and nitrates0,390%PM2,5 and sulfates0,640%Hospital admissions7.870PM10 and nitrates2,07(10-6respiratoryPM2,5 and sulfates3,46(10-6SO22,04(10-6NOx2,34(10-6Hospital admissions7.870PM10 and nitrates5,04(10-6cerebrovascularPM2,5 and sulfates8,04(10-6Emergency room visits223PM10 and nitrates13,7(10-6for asthma and COPDPM2,5 and sulfates22,8(10-6Receptor: Adults(4)Restricted activity days75PM10 and nitrates0,025PM2,5 and sulfates0,042(1) mortality values given at a discount rate of 3%, based on YOLL. (2) slope of the exposure-response function is expressed in percentage change in annual mortality rate per unit of pollutant concentration increase (% change per (g/m3) for mortality, while in number of events per person per (g/m3 for morbidity. (3) baseline mortality in Croatia is 1,1%. (4) age group 14-65, in Croatia 68% of total population. VII. MONETARY VALUATION OF HEALTH EFFECTS Health impacts are generally valued more highly than the conventional economic approach would suggest. Mortality impacts can be valued based on the willingness to pay (WTP) for reduction of the risk of death, or on the willingness to accept compensation (WTA) for an increase in risk. WTP or WTA is converted into the value of statistical life (VSL) dividing it by the change in risk. For example, if the estimated WTP is ECU 100 for a reduction in the risk of death of 10-4, the value of statistical life is estimated at 1 million ECU. However, increased air pollution can not actually cause 'additional' deaths  it can only reduce life expectancy slightly. For deaths arising from illnesses linked to air pollution it is recommended to use years of life lost (YOLL) calculation, while VSL approach only for valuing fatal accidents and cases where general population is affected and not only risk groups. Value of one year of life lost (vYOLL) can be determined from the VSL estimate, applying the formula below, if one knows the age of the reference group and the discount rate to be applied to present vs. future years of life.  EMBED Equation.3 , where: r  discount rate (usually 3%), Tl  number of years of life lost. If e.g. life expectancy for a prime age male is assumed 37 years and if VSL equals 3,1 million ECU, value of YOLL turns out around 100.000 ECU with zero discount rate, i.e. 134.000 ECU with discount rate of 3%. Morbidity impacts valuation is based on the cost of illness, that comprises the value of time lost due to the illness (valued through lost wages), the value of the lost utility because of pain and suffering and the costs of any expenditures on averting and mitigating consequences of illness. VIII. APPLICATION OF THE IMPACT PATHWAY METHODOLOGY ON CROATIAN POWER SYSTEM The aim of the analysis made here is to estimate costs of health damages through air pollution caused by electricity generation in Croatia. Two types of fossil-fired power plants are observed, one coal and one natural gas fired facility, since they are among candidates for future power system expansion. Both power plants are assumed to comply with domestic and European Union s emission standards, so the emission rates equal the upper emission limits. Basic technical end environmental data are given in  REF _Ref450279940 \h  \* MERGEFORMAT Table 2. Table  SEQ Table \* ARABIC 2 Technical data and emission rates of the analyzed power plants Coal facilityNatural gas facilityGross/net capacity380/350 MW370/350 MWHours on full load6570 h/yr6570 h/yrFlue gas volume1,2E+6 m3/h2,1E+6 m3/hFlue gas temperature403 K403 KStack height200 m200 mStack diameter6 m6 mEmissionsmg/m3g/kWhmg/m3g/kWhParticulates500,16800SO24001,34300NOx6502,1821000,6CO22,45E+5822,90,43E+5258,55 Both facilities are assumed to be located in the densely populated urban area of Zagreb, the Croatian capital. Geographical coordinates of the site are 16( E and 45,8( N. Impact analysis on the local level, i.e. within 50 km from the source, displays a local (so called fine) grid with 100 km2 large cells, the average pollutant increment ((g/m3) in each cell and the total number of health events in the whole local grid. To calculate atmospheric dispersion on the local level, hourly meteorological data for the plant site are required, while for estimation of health impact population density in each cell of the local grid is needed. The basic meteorological data for Zagreb  monthly temperature extremes and frequency of wind speeds and wind directions (so called windrose) in the 15-year sequence  are obtained from the Croatian State Meteorological and Hydrological Service. Since no continuous measurements of wind and temperature were available, and because some additional parameters describing atmospheric conditions are needed for local dispersion modeling, meteorological data set had to be constructed before imported into the EcoSense. Average annual windrose for Zagreb and an approximation of daily temperature curve for each season are given in  REF _Ref450368150 \h  \* MERGEFORMAT Figure 2. Figure  SEQ Figure \* ARABIC 2 Annual windrose and approximated temperature daily flow at Zagreb site Zagreb is not a very windy area, which can be concluded from rather high frequency of calms (13%). The prevailing winds are from north (19%) and northeast (11%). The largest average wind speeds, occurring in northeasterly and southwesterly directions, do not exceed 3 m/s (at 10 m above ground). According to the demographic data for Zagreb and Croatia, population density in the outer city area (comprising 4 cells around the plant, altogether 400 km2) is set to 3000 people/km2, while in the remaining 96 cells to 100 people/km2. Average population density in Croatia equals 85 inhabitants/km2. IX. ESTIMATION OF EXTERNAL COSTS DUE TO OPERATION OF THE ANALYZED POWER PLANTS Local analysis Based on power plants emission rates and local meteorological data, average annual concentrations of SO2, NOx and particulates on the local level were calculated, using the ISCST2 local dispersion model, incorporated in EcoSense. Spatial distributions of pollutant increments within 50 km of the coal power plant are shown in the figures below. The highest concentrations occur in the very grid cell where the plant is situated and in cells downwind the stack, i.e. southwest from the plant. The highest concentration of particulate matter amounts to 0,083 (g/m3, the highest NOx is 1,1 (g/m3 while SO2 0,7 (g/m3.  Figure  SEQ Figure \* ARABIC 3 Ambient concentration increase of SO2 and NOx due to coal power plant To calculate health impacts in the analyzed area, the concentration field for each pollutant has to be multiplied by the population field and the appropriate exposure-response coefficient. Health impacts have no common measure, mortality is expressed either in number of cases or in years of life lost, while morbidity in number of events or number of days. To sum them all up in a single number, health effects should be monetized, i.e. multiplied by their monetary values. Spatial distribution of the monetized health damage due to particulates-caused pollution, per unit of electricity generated in the power plant, is shown on the right-hand side of  REF _Ref450112363 \h  \* MERGEFORMAT Figure 4. Mortality impacts are here valued using YOLL.  Figure  SEQ Figure \* ARABIC 4 Spatial distribution of particulates concentration and monetized health damages The level of health effects decisively depends on the number of people affected. Here the largest health damages occur in the four grid cells around the power plant, where the population density is 3000 persons/km2 (densely populated urban area). Health damages in other grid cells are almost negligible, due to 30 times lower population density and lower pollution increments at larger distances from source. Health damages also much depend on the way mortality is valued  if calculated via VSL damages are several times higher than via YOLL. The largest portion of damage costs, over 90%, account for mortality endpoints, specially if calculated via VSL.  REF _Ref450144800 \h  \* MERGEFORMAT Table 3 gives local damage (external) costs per unit of electricity produced and of pollutant emitted from a coal and a gas fired power plant. Total local costs due to air pollution (particulates, SO2 and NOx), amount to around 9 mECU/kWh via VSL, i.e. 1,1 mECU/kWh via YOLL. If the population density in the whole observed area equaled the average value for Croatia (85/km2), the damage costs would be only 0,61 mECU/kWh (VSL) i.e. 0,08 mECU/kWh (YOLL). Health impacts of the gas-fired power plant originate only from NOx emissions. Total health damages on the local level amount to only 0,5 mECU/kWh (VSL), i.e. 0,02 mECU/kWh (YOLL). With the average population density of 85 inhab/km2, health impacts and the associated damage costs would be only 0,03 mECU/kWh. Table  SEQ Table \* ARABIC 3 Damage costs of air pollution caused by electricity generation * VSLYOLLVSLYOLL(mECU/kWh)(ECU/t)Coal local scaleParticulates2,080,8412.4145.003SO23,880,152.889110NOx2,970,121.36253Total local costs8,941,10Coal regional scaleParticulates (a)0,641,693.82510.082SO28,380,326.237235NOx4,350,161.99375Sulfates (a)3,7310,162.777 (b)7.568 (b)Nitrates (a)6,7717,983.101 (b)8.240 (b)Total regional costs23,8630,32Gas local scaleNOx0,500,0283533Total local costs0,500,02Gas regional scaleNOx1,150,051.91576Nitrates (a)2,035,383.383 (b)8.962 (b)Total regional costs3,185,42* health damage due to tropospheric ozone and global warming is not included. (a) VSL-based chronic mortality due to regional-level particulates, sulfates and nitrates is not quantified in EcoSense, so the YOLL value is larger. (b) sulfates are expressed per ton of SO2, while nitrates per ton of NOx. Regional analysis Regional analysis of health impacts caused by operation of the two analyzed power plants was conducted for the region of Europe. Since meteorological and population data for the whole of Europe are incorporated in the EcoSense model, the only necessary input data for the regional analysis were power plant s latitude and longitude and emission rates. Table  SEQ Table \* ARABIC 4 Maximal regional concentrations ((g/m3) CoalNatural gasParticulates0,007-SO20,052-NOx0,0690,019Sulfates0,008-Nitrates0,0280,008 According to the European-wide atmospheric transport and distribution, there is an increase in ambient concentrations predominantly in the north and northeast from Croatia (Austria, Hungary, Slovakia). Maximal pollutant increments are given in  REF _Ref450354590 \h  \* MERGEFORMAT Table 4. Health impact distribution depends on the population density, and is similar to the concentration field. Health damage costs on the European level, due to operation of the analyzed power plants, are given in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3. They are much larger than local damage costs, due to more people affected. Since VSL-based chronic mortality is not quantified on the regional level, YOLL-based mortality (and therefore total damage costs) is larger. Total regional health damage amounts to 30,3 mECU/kWh for the coal power plant, and 5,4 mECU/kWh for the gas power plant. It has to be stressed the figures in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3 include neither NOx damage through ozone nor CO2 damage through global warming. There are suggestions to set the average ozone damage for the whole Europe to 1500 ECU/t NO2, (3(. The range of suggested CO2 damage cost is very broad (3,8-139 ECU/t CO2), with the geometric mean estimate of 29 ECU/t. X. INCORPORATING DAMAGE COSTS IN POWER SYSTEM EXPANSION PLANNING Although the calculated damage costs do not necessarily constitute externalities in their entirety, they can be used as good indicators of external costs. External costs can serve as an additional criterion for the evaluation of different energy scenarios, thus introducing the environmental aspects into the social cost optimization process. Only the air pollution ( health impact pathway was observed here, i.e. only impacts of coal and natural gas combustion. Other fuel cycle steps and externalities of nuclear and hydro facilities are not taken into account. After having external costs estimated for two more or less representative power plants (reference technologies and rather a representative location), an attempt has been made to extrapolate them to the whole electricity sector and include in the planning process. Of course, it is a rather hypothetical exercise intended to give only a rough insight in what the consequences of external cost internalization might be. Two extreme scenarios of Croatian power system expansion are observed: one with unlimited and the other one with very limited availability of natural gas, those two spanning the expansion options range (4(. The question is how to meet the forecasted electricity demand at lowest possible cost, i.e. what kind of new units and in what dynamics should be built in the next 30 years. Candidate non(hydro power plants are coal, gas and nuclear facilities, with annualized production costs given in  REF _Ref450216288 \h  \* MERGEFORMAT Figure 5. Since the gas fired power plants are the cheapest, they are the first to enter the optimal capacity mix, so if gas availability is unconstrained the optimal expansion plan will constitute of gas fired units only ( REF _Ref450217149 \h  \* MERGEFORMAT Figure 6, fist bar on the left). If on the other hand only a small part (20% in the scenario gas-min) of the total capacity needs can be gas fuelled, the rest has to be met by coal and nuclear units (almost 40% each, as shown in the fourth bar from the left). That optimization result is based on traditional, i.e. private costs of electricity, which include investment cost, fuel cost, operation and maintenance costs and costs of unserved energy. Figure  SEQ Figure \* ARABIC 5 Annualized production costs with and without external costs added What happens if external costs are added to private costs? Since external costs are proportional to emissions, they should be added to variable component of the production costs, which is reflected through lifting up the right-hand side of the cost curve. Because only the air pollution damages were quantified here, fossil fired power plants are the only ones to experience increase in costs. If local external costs are added, following the values in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3, cost increase is almost negligible. The capacity structure in both scenarios remains practically unchanged with respect to the base case, except for the slight increase in hydro capacity. (Base case refers to private cost only). That can be seen comparing the first two bars, i.e. the fourth and fifth bar in  REF _Ref450217149 \h  \* MERGEFORMAT Figure 6. Figure  SEQ Figure \* ARABIC 6 Optimal capacity mixes and cumulative emissions in the analyzed scenarios However, if regional external costs are added, costs of coal units dramatically rise (at full load they get more than doubled), that having large consequences on the optimal capacity structure. The absolute advantage of gas units is also shaken  even with unlimited natural gas supply, two nuclear units enter the optimal expansion plan. If natural gas is limited, as much as four nuclear units are added to the system (almost 70% of total capacity). Figure  SEQ Figure \* ARABIC 7 Emissions in the analyzed scenarios Emission curves for three gas-max cases and three gas-min cases are given in  REF _Ref450217149 \h  \* MERGEFORMAT Figure 6. The base case and the case with local external costs have the same emission curves, while the one with regional external costs included sits much lower. Optimal solution is much more affected by external costs if there is a limited quantity of natural gas, i.e. competition existing only between coal and nuclear facilities. Having the regional external costs included in the planning process leads once to four times lower emissions (that if natural gas is limited), and another time to only 30% lower emissions (that if natural gas is unconstrained). XI. CONCLUSION External costs of electricity represent the monetary value of the environmental damage caused by electricity generation. Evaluation of externalities, better say damages, using the impact pathway approach is the most comprehensive but also a very site-specific routine. Since this paper is one of the first attempts to evaluate electricity externalities in Croatian power system, the focus was put on priority impacts for Croatia. Those are health effects of air pollution caused by coal and gas fired facilities, which are candidates for construction in the following 30 years. Damages linked to coal power plants are much larger than those linked to gas fired facilities, since the latter are responsible only for NOx emission and nitrates. The largest share in the damage costs accounts for mortality effects. The highest damages are attributable to particulate matter, on local level directly while on the regional level in the form of sulfates and nitrates. Health damages highly depend on the number of people affected  that is why local damages (within 50 km from the source) are much lower than on the European scale. When incorporated into electricity system expansion planning, the local external costs do not significantly influence the optimal capacity mix, but the regional external costs do so in a great deal. With regional external costs added, competitiveness of coal units gets largely reduced, so they lose battle with nuclear units. Even the absolute priority of gas units is disturbed and some room in the optimal capacity mix opens for nuclear power. It has to be stressed that external costs of coal power plants can be lowered by further reducing their emissions, i.e. by applying more efficient abatement technologies already available on the market. Of course, that would induce some additional direct costs. A particularly important question here is the selection of spatial boundaries within which the external costs should be internalized and imposed on the polluter. Numerous analyses proved it is due to pollutants nature necessary to capture impacts as fully as possible. However, it is very important to define geographical scope within which those impacts should be taken into account, since that can seriously influence decision making in the country of emissions origin. REFERENCES (1( ExternE - Externalities of Energy, EC EUR 16521 EN, DG XII, Brussels, 1995. (2( EcoSense, Version 2.0, IER, Stuttgart, 1997. (3( ExternE - Externalities of Energy, EC EUR 16523 EN, DG XII, Brussels, 1998. (4( D. Feretic, Z. Tomsic, T. Kovacevic, M. Bozicevic: Croatia MESPO Report, research study prepared for the IAEA Wienna, Faculty of electrical engineering and computing, Zagreb, 1999. ȟʟ̟xz|46lP$$$$$$$$$$$ & F PRVZ^bdD$USQQE$$T8\O B $$h$$x$ $>x$E$$T8\O B Dr.08:,.\^z|^`HJRT46^`L jm j6 OJQJmH H*H* j] j[mH  j]CJ j[CJCJ CJmHnH jCJULDrtv468  $ & F $ & F V:TV(Hx||E$$T8\  $$ & F$  $ & F$ $ & F   & Fx   & F  DFLNVbd "$&(pv "&Z`8> "&*68BDHLXZdfjn 026ֿֿֿֿֿֿ jCJCJH*6CJCJmH CJH*CJ j]CJ j[CJ CJmHnH jCJUCJH* jm jKBP $ & F$ E$$T8\  $$ & F$  $ & F<$  PRTV|t88 $$ & F$  $ & F$ E$$T8\  .024Zht $ & F$ E$$T8\  $$ & F$  $ & F$  hj,XE$$T8\  $$ & F$  $ & F$ E$$T8\  ,.02:NPRT\prDD $ & F$  $$ & F$  $ & F$ E$$T8\ (<>jrXE$$T8\  $$ & F$  $ & F$ E$$T8\  6:vz     2 8 B ~      l r     . 0 6 8 X ^    z .2XZ      CJmHnHj UH* jEHUj : UV jUH*OJQJmH H*OJQJmH  OJQJmH  jmCJ6CJ jCJCJH*CJCJH*@  : X`J $ & F<$ E$$T8\  $$ & F$  $ & F$ E$$T8\ : < > @ B t z    $$ & F$  $ & F$ E$$T8\ $$ & F<$        l p]K$ & Fex E$$T8\  $ & F$   & F$ E$$T8\ l X   " $ z | ~ VX  $ & F   & F $ & Fxx $ & F  & Fe     !!>!T!j!l!c:$$TFwpi<$$T4Fwpi$$$$$$  & F  $ & F    H J L N  !!""""""""""6#8#\#^####%%%%&&t&v&|&~&-----........,...Z.\.^.`..v2x2223333B4F45mH j!UmHmHnHj!U jU jmH* jB*B*CJH*mH 6B*CJmH B*CJH*mH  B*CJmH  CJmHnHCJ jCJUAl!!!!!!! ""8"D"P"R"l"x""""""""h`:$$TFwpi$$$$$""""""##(#,#0#l$$R$$T4rws pli$$$ 0#2#:#B#N#R#V#X#`#h#t#|#######L\$$$$$$$$R$$T4rws pli####(.....33}rpe  & Fx  $$l $ & F$   & F7   & F  & F R$$T4rws pli$$ 33B4D4F4d4f44969:9 :??@EFLM MMM$$$$$x $$ & Fx   & Fx   & F  $ & F  $ & F  & F F4d46585@5B5888888899999&9(9.9096989:9H9J9v9x9z9|99999 :&?(?T?V?v?x?????????*@,@.@0@@~BBEE&F(FHFJFVFXFZFGGGG6I8I^JjAfU jOUmHmHnHj[OU jUCJH* CJmHnH jCJUCJ j4UmHH* jmH*56H^J`JKKFLRLTL~LLLLM M0M2MZM|MMMMNN2NVNpNNNNNN*O,OhOnOOOOOOOOOPP P4PRPZPpPrPPPPPPPPP QQQQXQ^QQQQQDzǪB*CJOJQJ5CJB*B*CJOJQJ CJOJQJ 56CJ B*CJH* 6B*CJ B*CJH*B*CJCJ6CJ CJmHnH jCJUCJH*H*CM$M.M0M2MHMXMZM|M~MMTiXd^^$$$$<$$T4F1A$P$$Tr1 }A$$$ MMMMMMMMM$$$$$R$$T4r1 }A$$$MMMMMMNN NNN*N0N2NVN`NjNlNnNd`|$$$$$$P$$Tr1 }AnNpNNNNNNNNdQJ$$R$$T4r1 }A$$$$P$$Tr1 }ANNNNNNNOOO$O&O.O8OBONOTOVOpOd`$$P$$Tr1 }A$$$pOzOOOOOOOOOP P4P@PLPNPPPRPT$$$P$$Tr1 }A$$$RPrPtPvPxPzP|PPPPPPX$$R$$T4r1 }A$$$$ PPPPPPPP Q|T`M$$P$$Tr1 }A$$$$P$$Tr1 }A QQQQQQQ(Q2Q>QDQ`$$R$$T4r1 }A$$$ DQFQ`QjQtQQQQQQQQQ$$$$$$P$$Tr1 }A QQQQ~RRSSSS8T:T>TBTfT(W4W6W`WbWdWfWhWWWWWWWWXX(X*XZZZZZZZZZ\\\\\\\\\__ ``.`0`<`>`@`f`h`jgUj;gUmHnHjfU jUH*mH CJH* jmCJ 56CJ CJmHnH jCJUCJ56CJH*CJH* 6B*CJCJB*CJ>QQ~RS>T@TBTfThT(WWWW{wwtnn$$$$ $ & F   & F<   & F<   & Fx P$$Tr1 }A WWWWXX XXX"XX4<$$Tl4F O<$$Tl4F O$$$ "X$X,X8XDXFXXXdXhXjX|XXXXDHX|<$$Tl4F O$$$$$<$$Tl4F O XX_bbb c"c$cjttttdu(|*|.| $$ & F$   & Fx $$l$$ & F$  $ & F   & F  & F h```aaaaaaaa4b6bffjdlflhljlmmnnnnnn oooppppqqq q"qtttttttttttbuduxxyy>yj`wUmHCJmH CJmHnH jCJUCJmH  j/iUmHjhUmHmHnHj5hUmH jUmH j-mH j]mH j[mHmH j j] j[H*9>y@yLyNyPy{{{{||| |"|*|,|.|0|>|@|l|n|p|r|}ހ.ȁʁ(*,FHؘژܘĽ j[5 hmH nHH*jUmH jUmH j7UmH jUmH jUmH CJmHnH jCJUCJmH  jZxUmHjwUmHmHmHnH jUmH:.|0|}.x $$$T8 $$ & F$ $$Tlz^(c`p9׸ W3"`Ppʌ40'` Xh*L<̑y9>f&yHz;No3k5+77c$[^[ڻ|^jx뫅jh/௯UPf̙SU]4+uK֪Bt O2O)>tjSm}I ɿ>>ImT'_p}1hWS$MWqO:{~;drmmidUe}DyK _Ref450217149}DyK _Ref450186314&Dd!YB  S UAb:qt!)['%lnd:qt!)['%PNG  IHDRh^#gAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_IDATx_hZ'N@ )Z`JRQֵGA(j5JDH 8A )Bz3(bb.n3aڦCؐPyٝ}O*}+uhHk5 Q }u]tE׮=]?n Op$c=# {{OՃݠd"!>zoWWו^Q.JWooWɗ?( )M& /@@W=]_ Ua՞^*"K+|!BIt}-K=Q %7(T+G, K?$g lÅZ(_o2rX*t$Re`WW%X«_|-QRA! yle(ZJI%Ri!HAunfİXAQ<>:4\|fmqqbqX H4 )&g G!\_ 5,FO`YN'P$H(Kz}}KpKCr%3gyʗJ4Ny\\\:&lN\\r: WȟLCHрh |y#5/J|:],m4tj0BL2BijnH"SihIE$¶/qK,1VjToWsIjs;r>X״yGRV.K|Uv }ՅD3LiccрjqsDXV׊-VWWiX4(,m21hZ9,K &/p Pvxkk#ϯnlT\ējmcmZfZ)H%r:af6R& _ |IevKOEp<eյFcV-.kk[$4gRRcrLMZȚt:'/9M:ӧm&(ac#bqxkZ.k'>*л.e}iJ,; >l W[ZTol=ndĖ5 Id{\N .B}[z鳧XColAlxX[pk[[Oj>ZMVGB(1'qeoH %e- ={ B}QK2| EkzTp8d6`qL}=5dyvcWRX/rfcsʹRn4Z O:8ˤ8wge< Kէ/5zi@#R6Y.&jVjGJ^p!jūS9 dU +߁?NN[-mJx4LjmZ*Iu8XP߁j R6g1V:==ze7V7 ^_HISW뵵r6TjZY甓 w*k eik2j1yJNH{fg=Ct&MlZAЧp\k0)͸gB^V20J"NYm3뚞va_–T$B=I^ZRe20F ̣#dR.3xpBd6jlvN;I\( 2R..'2Tf+d‘JWPJe\6N@ɇ-RҀBG߽k',MKfr+FD2bd,EX73Z(#Q+"`_bxCML56s%.D$rbt[JrEp&\( B|鐝 s_]CkGhpNmV?\J&qgX&łnl0 `ZXZj1W]'I@P6tZ5FنC7ڡ/9"j%I\S~Eb\aQTup(wQ{CL:/lf=cqNOB\,lr)p:pa0 JzeQѯ͝wGA 6i6h嚝L .#Q|3HU: Gb :e1!@ wmӶZqbz Eb8?@ .&bKK9֍zq\YS(\xzل"DXttJ+8|~xqh8L%+ O8G z$TVUr>w0vGEZ't6뙶F'RNHs4%ST*a)̰H"Uh .! Bbgs߽kEZڿ<bBR&LD  !d(¨k&嶻Ao~L)a[a>?Vv`--%a?] CxJe%BR A$j&L/(1A|t|ttoZmg矶9,<[\r`š; ^0R$) hz%hnr'N;)9YԴgVVV+9 \e P/S˹Ҽ76V{Yqz.d Œ\&Z,Wḣy 9U;z1t,JE2L&8i_*?y_{{Ouzn.;͌+A b1p'cbgfCem/n;{誣Cوldd@z Qa $ Rny#uSP4EK^v~>zYL#d%-ͻ޾{Oo{~Đ'`ׯ dC7ZL:ܜgriI'KK>?I&RH$#igYuyg\^vEH=q[hk~W^ؘL*U(H:cpƆTd6X:dG"q k;Sv pf@Km~gr2222vsL6&BS.Z!M>6(KRXO:5ウKaXz.°A{Hڊ(ԔXL:qks nh&cv)J]V˴n;SS|: O]tn}+@s&R1bNLN'^dNl,ae)sr^2]y[/\s^E|G*90260'lV+\! ѝS64e]<'/FÎG{o^y1$QP:L,OQ}1ŢC>\y[ bz\P" TA{y h#mE|ݠHPRJDORU T"2Ri1,f =a $(80 H$xzPUsS/$<-8DP(RJ ۄLx\a* üAiCl0DA*J%mo&tHyjG&5EZ-&LFvŖV yX?HuY!($AP ;Qb@E(J%(xj-aZM$,5+$.%Y(臝&u܅G/0P0x5$ (<ԔRё5nb y& GnW{|0_.ΫfࠝfAZR-"BT* 4:= vA6 OcI%5(jipJJEMѩ No sG@4qOOM:ɬúwo&2^~C`ww("kRw\,Ptz=!iZE[쮳>G.~8#:~DE*KMB!jt-Eӷh;:'fz͙><8!qD _7<1`Tz-ޠӏԝwQ9a6[ &y8\;''j=Q(D=5 =UƨL,3I,*wѰwxΧ(r(>:|6( XsA'ppp;w-Ҧ F Ƃ(})O(‰kPx0r z4<aLwR4=0 $2a<}]WutD@HR$%"QF{1alPuK.WYڱ , K yJt8BY;"FǗM'j~ eb2:=Fry1WY6GbCr]OhD!go ",]chirn'[82sЃ8:i}7cRF) @iX"3wP܀9C8|Ge^Ԏ]G1@#s ?"z`8x/#ρqhh'ٽÖto^+jIdkU,IodO9PƊj<w{sAc;uۊ۞QdtBRv%g4 "HP?1Hb) ξk:ޡ͛c )9p ~u@mYFd4eq,.{쀾}tGg$#ccRT&zj?|cjKbxMF yC]<κ=[`׿>#o$ ar #֪oOVCq#=+R!tLA翵lh~5/0qcD?JӒ\h:^zJ"039ic : .Q5Fo &VP2 b %pSaY^68{yK>ֻD!䆤]>r,RC$v'4r5-<'M8%}|#?^çĨ1ڧJ_-ٕڈY$4h2''VMAaTO|Nֻ޾^ih8l6JAѝ_4Cäb23N.[ &P(>Yu:.(DNQj!uY9u|wB;FFJ.DžLB4h44Z-3c(ptL;E7A?9i^t/t9 )%4[A~6 Z==n256r  I@ԀH,BGݐ=[R٨R~⏮?z b֐=N>}t.rhK]\eiRy$0tGZK(œ_v¶ zyĨ$SE*\4zJ; (@z:huvA;-#Y $5<::zC:S+-`|O|i EIXGd6I[ !t4Aag<$֜)2_B^KE<I σMRh ZxViO DOv}׻V@DDA>CDLQ(EEJ"OvioIENDB`Dd^f'\ T  0Vh XAbb~8Pmysnb~8PmysPNG  IHDR^^gAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_YIDATx] d2/ H>%|ם`[U 3ga`,_ρ)/gA<m鹈Ssg?x[PE_ R:Mds& arom%f:bF3ȂEyi|~~HOC=cJ_ ޗ\^ E8"i}Vz9PdZ_ێIoo ܫ+t{KO.>o 5H3xՎ}r>}}ܗ/aPK]b_ӿƁxpk`4E^ r[:gf$~g'R/O=?۽|e>_ϫB`/Z kNSBQHR|pѨA6"B5Ï]Noz;bZ|_mv4yV]iUZ[; Tyj!:al8s>HL.rGo87T$e8vM Yw4Pphn"/ŧJUYMm`88\o(Uz6972&j&3D8bWB*(E@O򭏊V*/Y8]x:oڽ2A땖@6]zZ iNh^f|]k=E3";/ 0fm뱗Tk8k6GcyCZ5"@B 䛂H`*MdIN&Nf+֑ρst Yu/1ѧܱ [t\sԈO`F"Xhj@mY R/N$&pT  b Sf]LE+l?K,C]~n}=G3I[EAKEBqϱdp$L' IIi$3q](.͕[ *'L&ki'iP0I؋K:'x;+kZWHw"ub:@W6 ,Δu廿Ŕ)sJGWt(i  `A> ${-J-?鞀 F@5$E":ZG C#uNh1-3J(zbw\#ȯI|u0.[c,R!<(ڦ+F:LwHBbI8^Bk;bՈACWagAsbw9N\ƌMCɒ@j!<}M<}SM`L7| ]y|߭ bMo B_Q+6m+='m#%+D]eAW+乽4ˮd09!9lߎaW` ǻ,kj'x K:n 2:ýTէ<χlӰ걐Θ 歴|EA*{`{m*eT;=lRK0/mR*뭠E9@ߏ6)rPn)!Gx/20]\yg+~{@7KvuT,HfUU($!U-{0Ҹ&C2 & G3j"Av7| N.6'Yz+I5jns+lr/gjwΖL_+ ;ps9 wv3-*ROߣD06Od뀤D%˄p{ KLIg"N ` .%pg7Q׏Q酛[{eK`ka,ܳ @{Wu49C2~I{ 9MF<"@S-4&/[&)jx.pX<ӶPmހX^1H5,a۴ШWug8Typ8SW9fs˪"ѳ' kr Pu/  ^%WQVfW I;)oΓ4q_Bˇ^"ĔkAfa?Y"]x!+N٭Qj !h23@kCv/oA53w.ah פR.bH ~c=ʳUWY2 /㪶1yHR;JTb$ NR\y3boLw_n*=ӑ#0,B;Bem U ^ hׇYquOno\^晲N8lh_YU._B1뼯^;ahy!Zf>kcU~! n%Nؚ&Ǡ+Cޢp e펗1VDbc:argTU߃ֹ[;jMʉL1OGm%5fr˝#/q"Ϛtjnˑ)Df~z5Ȋ{{j\Oz}Xd^\fiA)E|W a{h_ʧOXgrD(?o% x~^c{t@L{Hʴ%E3rȿkxPׯD4^lMrVHM3Cj?x}d8Io~g_\m{C<./y Cx)x*  ZjH6B q5 --6$`TJ͕F@o7jh|!,^ 8GZk2fVGriŠ!y}t=9^G{*afK'Ld9S|j]?_\&tHњT"Ehӹ[5b#,xE>N×ƖoV]AQzXynQrz^^MwS \Y! ꏫO'tC$yeZepniHW^3O'wh3_i>F% `SG[jK7){aYsS 6G?Q&MYzun3W=J%ws.6n#d+'4I[5G?zb>4&v-WPQkr.``x Bӛ\tkT -fCnYQ( Ix~ V#~96}Z1/!mB Pʙ/>CmSj0*9˜y"p31A_ӪfmKt(p׋8u'eXǗϲ/ }xc(r{9Z.+B¦Brk%C񗅿.&7 ?#NA`tky207 0767˳A|\);"SvJВw_ ardeƾ[f-@ &hy"Kuܫ:M]Y`_hՕp;FMF m8/x%V6rGkA*dCu^:;|#c*j%3YD'F_IF[5|9'Fk5ҖRצ\nd@jM`]izPO>h zU2i!۪75Cj0R[ W1q j+^jH?Q?9NV#<1`+!p+m^h>b,!I• J<ݡ ^/b47S%{@hK &A09TMF'0EpiJT7w% Hg~/G P "iUҵCM&Y*r.u {k $:IFh cJ"NfJaBɢ _뉱IR0ۥ>*ݬF+4U*_NQ*{U>_Po'ǩ8-U}LURgrX>yfd}.ͺN$&ȺXTLlxFIz1>>Wәc @67r鹹FɣwB6=Ȓl'jd@gakAiAB?NAxѫ3ۙ2C?Ls9 3S rM+k8P"c$:• e*B*G >jW`DLmT㻚8QGU1'5z3Ɛ_lI8zꨱO#Hg_F48}kWã9k1-;{=X'(ktYd!9NGt:y Ը 2al- 7 GxmE=]<+Wӟ 9r)A.Sx 0D3*&p߉SS9N7CtCvj yT=!¹hr_ E(Tһ+J4q4"+])vz|)} ?+.gu_4Ϲ"szZNmuo]H_c\ܗ3]S_)r=q@}ڨzwc1855렂A6W }aQ_"ĸ{"[K3w%T%N}CZK_ި`VA ٨E65Z|5FwQ>h9ʙSy%{˜DW!a(A."n'"!])v*Wb].|[z;'>Kvw~_,p>/W?̼~I }4g~.`.uN#Wܿ8L;rB pRKfg93q5r2aㄳOs賜?HOq 9ݜ'<ў[ 7&2:363o3z;oD5 NOws4vۉc:NNrz{O|?Ig21#y=J6x5v:t:;|ƗbcV~FRo[@> c99F׎Z|w59$rXcߚN+Ze |~Fmğ1l=2[8%## I>%MLK)PnS\KWgqv`);و;rd#(R#HXFIFg~^T!1:J }\:uz0ƒOE6ZVrF1#>Ú5X{'dɌOuLSyBqMmCron3tr:J?YІlf_ϸ&3[-t[MsK_b'l0o&z`= Z'?rº)чaZw9촰v,tU@%jmΉfNw810bzȩэN>DJ1|m:M;T@Db=^s2݃=<愐lC, FL?c/;QWj9ǐl//0Q00!-rGG'ؿ8_?3!? 8NܷY˷M漅8 Ƈ\5Eu~')?y:V?ψSg?NԈ:FX#Q_9UF :#S:s'bYD3ǰ.xyZ| ۨ^Ph-qtq4KGkVks3E\b$+`K"bg"p'lz5ZPAJ+>cDn-æ [1N w\V>L wlcǜ;%ڈoX3s_؂ Nb:Z6s}37cwB6 'La?:!gDrN?:PV%Պm+LlgP8a]|~c!MOfc3S Իa 3B9F c5UB'#32.9&3אjX*?k`y+>2t˰_ℐ 7J{cd>'ak儱 n|7~pjq|tjtS۝2d#<]|nw%ND%~̜'9%z/! Gy1_C={Yr"U%#CDd&(<  C AbhLYؠ nhLYؠ PNG  IHDRAKgAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_ IDATxK `t39{*7`6FR0k[qDŽ =  Įi`pIͅ!E\BҦpC0~* /{.ojBP]&EP5Xzc]AXm%2~,, xɠs+ 3g2m}=c<T1<乩B"@ , XH5CM{%: J!G ])HuU-@6/M&)BYPKID99AR oMUD" Š~yh6";)։~/K9,NKGRK@htXDGFIENDB`DdB  S A? 2UpUb I`!UpUb  (`\xS=KArAHR{`QlQI'X#W[k;1[ys+zAht"& +0E1+E&;=^ *@B"AZ@E4}W2IJkW4 \qAhqD1\@[I H+I)y/Cxȵ|O3u5 ?+OmJ78.j /z wR6իY8 by 10 x 10 grid of quadratic cells each 100 km2 in size, with the power plant positioned in the grid center. The model calculates hourly concentration values of SO2, NOx and particulate matter averaged over one year at the center of each cell. Gaussian models require detailed description of meteorological data at the plant location provided by the user. They are valid up to 50 km from the plant. However, pollutant transport extends over much greater distances, when chemical reactions and formation of secondary pollutants can no longer be neglected. Therefore, different models are required for assessing long-range (regional) transport of pollutants, the most common are the Lagrangian trajectory models. Receptor-oriented trajectory model examines incoming trajectories of air parcels arriving from different directions to the receptor point (which is characterized by its mean annual windrose), moving at a representative wind speed and constant mixing height. European-wide transport of pollution is in the EcoSenscD*o=VZ6Jr!l_ǵ1,9'nx_~K[7'GcN٤Y*EV{˻q. ~>wuij8v9. $f@# vUC'ڱyS9}DyK _Ref450279940}DyK _Ref450368150_Dd$Q <  C A"!q*zX1hu$a!@=!q*zX1hu$ay[>qx] pV>?P-cT@icx@"U"AKRD P0ja0T CLVQ 6>Ukj uZzs{ror,{v\bpn:bx$GN6@)}\6 .x@0G s0d`D GJ-IwgdxRzpʿ ZO̸-t!Wb7i|9t3Qِئ1͸ O.0b؀ Y`LiB;2i-%,+|}1P;k°C/NG>3ߨxڞ%]h2N_73 > > ]iSځM\e:\?z2*2e۠"Sel ^a W 51xk ^g: o0x -ۦc6ڂ%70cϏ#W;o亜 0xK > > Z֓.#E/2x ^a W 51xk ^g: o0x dpt=fnj'`\ n;C|NH~4'}"'2~E Av睊!\}n0a*s t=0]*.‹`_)˔`tbCx$XX\31T(.OV\W*+«&[a}1 qe~)+-| ^ f1Ɇ# _r2g[WDXp^h'.7bh#,lK.@>'yͶdsƓ%QL}ll9&?Nq3I1<6e+6VŸG/z,eSNFnUF/粤2";Sa:!|?[VuLGXznTAljT!S<;!kvj7aW'Sy!^pmQTY ~Pq^lJ^lU/+MuQ~@L KlSS K0T)[ίŖa1r;Pބ*>O:mO|Ƌʟ_ CЧsNٞ~?ѷ|OcD~lԇ0eLe3cHVX9Ч\Q\oS氶J/bx ze+6U ߁-vsd*\sП|Nm>߯LUuN?m CMeKЄ!lEd{| џ }N';/D/D.;F eF0-6+Mu5>Ce+|R.KaS*-B/gM.8 _Cѧs}>_|.t<1mG۬|/k#|- :DZh}Xcm3D)ok` [&Ka; ߦllW V#|'ݪ,, o"Ҡl6UƄ.~Les3^VuO ?OT|%7碟7,jka&t=#sz6hZ#>P k:֍Þicm#VmE6M2ڊ# 6h+imVmY\"ڮcm h[n4ڪ"&Vm[BcNmcmwןptkv/1`=~XЖ7n7_m= n(ڶ'4k{hgYF۶hvHAk>d7}\6^y_Ԗ7f c~h1cpc=Z[ύC%k&{~nuwsF0/S<^ cJx7ՙ}(a(1e\?GIGSSy@Jٿ;Q[/޼RSJs.%Y2L;*q;kQ5o/v{RJs%bNJ\o+^\[4SyK:/.SDI, Sz'K;kQ6CY LY 17yz?/ b<”;`#|k"A=w Ɣ58Ɣxo$]cПb<26 urDHḀx߈)qS~')W`<|k4Q9럢oŔ{/[lji_)W o'JgJ6Ly1~(* ǔ^Ϸf%\ݘݘˋ֕ǯj5~5`;8J5`>/[{u3nW!c{^<·>U!w5kĔ,S>15(~j|S,|žu(͟g&LV _zqo-xۏQZk>R8Qc$JIGc#Y:E9uN2:# 9,isY1Y\"b:c ʈ$, 3{a#Wc}1I{dh=2#?B:idL餽3g;sX&sct>:5:k#s |1Ogκ|u>otnsY1Xswtco Ith<}:zP:bG\,ib&y

js ~qbUxwpuk!2A;87yO Hw}L0> 70,7Ŕͅ(|#$9s |]SgiC g瘻XKkf8`ΞKǜ8W27;2wMҼ-x2oIyʼ3xJwX ޹̻(yZ.eޕ{ 'og5&۲3Il? ܳ'\.4պ}w#h&l'ў Yhkg’_ }wT"w1݀|w9)y9PZǝ0}N;s,킰);.,3d@=m4?c> SƲr(Ak1[8킞uoH;]ŸE9Sy>pGk}"p/Fhޝ>?1 |܈%7G{m.JCܚZa*K77 Muvd?}&#eRy”94 S{ֽD,W#=P{!$oKe-\0 Tze Pv\w֑.jG/_*iGowP;紎E5po*Un/l h/KQR(r"ͧ|:T^miOcrI)r~+k3!ӥ=~#^vV[є.}prNC ].+@k NcR…Opz pz>[K_'ʀmZS~W*|)) .~*)o?M/P8aR>Qi|y '_~|)<;>~Opꃦ/|3 +|[fpOo/S~_/O*OH>*\4=kx=QM?&O/;&D}'jvn"M64Q+̕2O ~/k]G=96b\_?\?NWmȹV0Ir?.O洞\& >igqo4_j_uL~/ |<ke@kw?Va4%z癃̲ hLy/6Q?hЅ3*4NIbнZC).bRFT_8oׯ-i&ZVֹ&@$8'u)}_"N!DM)M*I#ÿV=p'Ã[s>p{]ܞ߰kwZ3E{v_'ձ;2H0G nl۞Lך&=,Z=m zDdrH  c $U A"n^U$z2r8%5@=n^U$z2r8zo!25)x] Uŕ>YDM[ub3ƘL&7ܢNel_}ihYM@Aeh(UW}y{wH/sN[uNݺNȯA:”1HvL<]T6?")"-%r!59ւR ӐZ!-0ie)9]$ϵ_A:1~hʍaxŚ)e tpauQw6QǏe0ǭHF: (Q"T|\VF"m (WZTWiyaSS:([ۚMYA;oO']9T7TjIjSxH?߂4+R~`Hqog!HdA'RS"oSP7A&R")Y sL((ϱueX2;%7l4|Χ|C!6/l6Q,<3;J2H}-._Cz-SC)B H[=~4@Oygfv_r@_A)i뻁3_c$3Nꔿ^BG?YE~[t4xxT+K6\?l5fKhJ%%|N]W;uUMWV8?ۦcl^H., B(k8 ?v"}5]EYpC@tq67x#Tt}URM5بЏ5UE_ U6} k*(O@ʦ?6}W@OR9Wrz7I6Dǽ3ئůi6EpMטqlгAGpMW |LIv P][\ve}} 1ok m#D7\&"o<'[Mp2A g(0': ʆӾ}Ej'B;;vNLm,CzO([K{O2B-\8ЌG;g 1z~'l2&=e,:֊sK*GTjW)ț~2*]~;MbOr:lcخi3+_k:M prco1ֹHr -B<Ч3Fz9A}+Yr~U?Xn3:nBz+I1k$svۍvB&xICk6?ErcI,5rЀD:Ḿ<W;987c17z>:dyhl.1>L2v(eДRsԝ1J\hl&$|8wʵc1CS|;jyMcAy|ȠiiizG|QI6QeD9np-1C2qpiKjD+v4 ob0~/Ù8ӂd1iy\c}c6Qn8UZgd\p5ȭFB A!c$۸^qdrp+Q_-4᱗7",lr#EhVm/h;A=O9vs/ZKZ^p!}=)'Ocu7I̓|ͧihaOptʏu:UyJͅɅ`b|ucp,6oKg f0.8xU< rK]`OU;GBc|klXH?X^%/o#y:pPjhVD7k%㗷ێ-H)(']9fzr'l;@.5_C<$\ԏ}d*BiZ"' }L!{|/>YW< ͳ|Xg@srE/,4ilՓ^qsd֟eOàvRڎg0.V9N.?8*me%Wr-2R3BɅCoGO2>a'HOOg ğv5{Cc$oʘ 9=!h' \bc`s݁zb Kz?+ߑu{9rxЌF{(a!ܥNa=sx[F ^=SuSqbIN|r'qR37me<%Bb*hfwiDg}Ƙ}Z}ZȋQbkDj^& rGZXE9vs_1кVr~_|q/k+h7߱n{)8 JI!@.B41rs/hzÏt#醹 =\ZiWgf6vIzoy 7ufH9i;8q]4ХNn[x-.p/ '\br\J홓4xa\=0W_OGur>P<?;"|՛Tux cp3v'3e$p/ur\Lk<+]S;=Y~p̌Te:%G[ssaR $?<:pPjh^?I{Ƭsہ ('nZ{jk>D}A[^qr{M9:ȯȧG.BrO{7 +bawh_w |Su|p KK5#f6>d$W=ӒY}?4O}}}^K,b bK.Kdnf˓^{M!^|/@C9_x3lrE qbk*SRX/½kg;c q89ApF\bq˱B?=l%=^_VH?C5H/;9w Q<Ùn Փ/[0V; zY'Ξyʞ㘭*5r#ceoJ h /;{kRhJq_?|Y8 ۛ6[@cxIQp#3 q2T1F8/.ur\gd`R%=^F>X/#݂Hk/\ U+7"Ƹ'WJ2w= bxImsUK-uopr{#܋ؤu/-f{)0~3uo{=vozw~.ԷmIBrohG}{@\Yƃ}CM=C<)QS#rEA )t 1s⛍#Y=IM }wh@;zY QGK,bP}̪=ޖޛ3j~?~=H/\ U_NoLà/ĩ漢-OT<^1E ]ދмPW1RR8j-1NjٌŏqbYMB9wIWpʑK,bP]ҕj͖^R/l+UPdħȭtier`i{-S / Wc߷X E:mbxA(NNݼ^|W"ءvߛȭC"۝Dvܩr +(9Y:O2MuջpE;~3|KCs7|]%1[Q;m?l'}s1^qO11hC; iC{J??2K,bt^.CZ04y/mS}Rیyː^sr\tv pvwϝV8A/ܐHm#4xlغνmf' >1tO#XĽ\B<l1[BcxI';jغd+Fm@sr\(~\༈u#A9_^٘2KzLF%ۑ"iy 3 NV Eٚ2KY'z3|^tI< wH{79v@Io;zN5h6D ۲ɅoµTȾN6GKIo,f*&*M*M** * *f*F*&U6#yy=}^-xzÕRz#HG+=FJS%+=AJORe'+=EJ_Szү+ӕ9?zd[#Xuf p]49VAj+ZǪ,uϻr7os#u.:`Yw笃sRs^ a g?VokWDž Q]:~ ޟҿta긨:~uܔ]9uW%@~y'x6L{woS>T?5KiJΉ*SZtJ*]t%Jk.ULr+ԿJJ(}EZ딮o?f_]s! 9gq܋ W܉9}uZf*7-6Uޮ9m7~D~Sϔ~ &J*-RZJ[(m0+mG*=JikG+=FJS%+=6ٮy>gj_ Lg)=[7~+b߿JUVyJ|(Pi;)X%JMw"W)˔^ߕ^@hh^1qp\eGU5׊sd_z7*IJ+EJoSz;FJRzQz*WiN}JWvRYCJV2|($z{)IO)51q}g>=wGC?ΖQ֘G&]e~y~hh\q~3E ǕW`1kzЙ)lv8t-x̿UKtNKym ׋_ ?Mu=9GE/{NwmܝĭȿC: ݦ.qc>K|al#|,(fz5 H}"O??Ҷj[ڶʛo(bCKŲșL*#_SH<}DyK _Ref450112363iDdH  c $5  A"]%\P@=]%\jޯ8")ox] p^q+2&<@q0(!8Ig„$06>&BkH iM l%۲dIeٲlYo&ml0!ݳuW[ ׳g={={Ͻ:D"M#_Dv]peE|DFI"IB{ۀ%Χ'J+;Ý3V,Ru8^)'QQ O-7D:5 eZWN/ȓsggP/EgTnҼxKB/܉% (- 1mWɕRr_Yu/:HmMyN( o3^y jMv}Չ9ԟ&%W?pG~#?HԿ/Q?їM^?'_=s|΅92D?KB~h9l^7l.i]=RY^g}}?~g~e2x6&wf:4'xG?k=Oz㳭;Is7{Mc([} #00! u +.&emr, un|G/oE^TWi?i4#w]f 9J`(m4 ڳKZ[$i[% ;뀾6pZl? IBN g(薹1ݻs%ġyZ9`/t/`7j/|u`oB+N:VZ=`Pz,<c~?EzϰhR-QLa)Q4i7Ojb:Gk㺳Dtt| 08<>_ZwQT z ֭/i|K>פ?$aqlJ!l}I > uZFC >Y1F^7-74lֆjmu>9HΉ4j/6tvN{CN@tv3ߧO2Q^y8<>:ߕO]אnQ/'tv1c7"Zz'"51SޙQe2 zON:U{/¾yDA!Q}LAJȵ~>5Xq18׺5؜IuH't% ڛO?s"Mz}`o8끓Q=vt`+tv{59p'ݯN OJ!ݿ|W"a9| {DsRh=c:Otިt7tv: Ѝr)`˾|0藶F/85/<:>2luF [b 5z= Kur_|r+(tryؽKy)~`CpvIaA >|u`oeA%o|&7|1; XuIa('Ds V^| 1#41/l{NA?"ZyͽP2/lzQ f9 zόVtZ, I>#Wo)X>?h9C 9z<):9OI.Au&|9R+栄`zwʙ'Xhv<⾝gkis*J黾P1~T?ܞC#ԃC ^ljT2'X JM^/5ڞNxueQR7i1y_{SDzW(OӽRJa XYXƭy\?ޤ.`npHkb蘴gm. (uWFk@ƳY3-1'zwkUh-5x6kmLaHTY:ke4 rRlJ%Gk[@7Lp'Kɬ}<{磰ɨQqURV῍0J('#b4c"woOt h5 Ti(tZLȱ,mOhK}ݾ_Y'3zRcXpVy&g3n% }o.@hy} {xtiyKxܨGGAo3zc:m'$P30 pf f=bMoҏVeCZpZJ[llmtv[H!gl<+p_No;}l<:w[ϪYa<7b{.}J t{i6~s'?xŤ%$'~&o߯|@ y(!\N=IRYwr=g֦IR^`֔j?M 9j504pċj'g )(5yS~:ə6LE)eQT7iʙ졬=T]B?ؽݧT?vwFxb[噜ftre,'g0 Exg,_f)>$i&yR_~OU۾-(lbPX,[bBWgKo{B[j1yy7NmW-֢iM:`f۴{T36C_8Ha71GT{g'8="Ha7{`w=SywT^}X[d(;uWE{iyϽ&>%6Rx{WYR?R:l{:^nGG}:~YgU)u YgݭtYkw)u]JgoJs͒U^ߪ<;x, 7sرJm?I2WޏL0&˟ȟ?؏|oKǿH7^1wɿ 3 c|?.ȗ,U)'@%/療<7^1i?eܨH_˗T$H7^1?A3Eȿ$:%ǐgH؏sxI\]%GL^nC"?1e" ^ >noC1ϙrHЕtm~k~tϗO^c5>Q]ia'm{vnZ{^ՑF?ӧ'}=3+'Ǽ-'m}7 >x+y~é7S ~Um*se{Lcwy~}W1%~cX2=-/ȗKrPRr! vvz)2K8ˎҷ}a2|.<,gbg>~^Ǿ!ùų+yU1y66ovw~1̝O>oi{^6b0j]?P/)g_i~nu{_k_bk gpL7xmwɓޯk./{\-ܩ7NZrs{,y!<Qz 2;96 c3[* ?h?po騄`Nಸ(c%xOD*tt8UN@!Mm>}%O]Be] SsIG*L}1>,?xN鯁ĚaEs$A6]}MI:+mk@_L'$ʳt$aLE_{}DyK _Ref450144800}DyK _Ref450354590}DyK _Ref450144800}DyK _Ref450144800}DyK _Ref450216288}DyK _Ref4502171491Dd<  C A" \]RtF>3} si@=u \]RtF>3:X>1C x[ pU9IѺTjV " *J(k "A6,*"L[Z2u ̤;侼(j/q}gKu2Et;`c͉(]|"EZD j-^dMz@( c5-DӐ(v8ytl_8ۉE%aΎkx< qզÞK9y;)h 3F1"Д9jQewm57k>|9*x=~þ۽kv-Gtu2/쥞Գ#={g/=߳7O ?n}­뚸7KMl:D;^ݾ3U=S%={g*vvybIǹ[Q7ljOe_d}9N֯~yӷo=2Ͼ̳zR>ҳ셞г{|ޜ*[o ~F{qڣƭk=jܺ1nk ^&c(q2bAğWlZRRּfrE8vy5Ǣ֤,j#])_ f@Jk Xt)xEwJ7D]Z9`hz*Z38 m48C1V;&YLeO7 g r mzrv 'ho݌^ jw5/ڝ~D.V{50J/&juЦEa7Zmy/~P=jBi }DTTp=b'@әQ63.Ju.w:Q#ޣޣnU[pS"hn@(6-Ry܍4LI?R1Hfch"z޶` >@QP=G  .>p{QfC~_6M=L{` n满h 'K|va n 6;jz?H|ᶣ؁P; mw02{Zom(3!-~{L|`o#sk} xhý2c3CXц{EXi0I|6x7Cm |hý2cBt`#P&>p eHkp밪{vjц[2c-kCzѽ*>pQfA~M(76+U^AVJY%`B~U>k.ц[Ѱ v{ 2ʌ/`O_|^?ݏCV㿉6Rː_jAOц{eR䗆O}?: @~B|XPo8&>pc ,<šX(h-BQ|y*軼.Va]9 =D=ߗU Pf,D>/i|Gn>ʌ/gB3 7悛Ggjy} ,ʌ A3% 7lps?j/WB|A1١Jhf"J|fяLpkT0\'>pe(3f"?3Hm(3ʐ/ 7`Nm&5>VL|B1yQ|aR n3OZ~$*v?yzeF)dgh"*>f=V% vf  7eT䧆B{6dS_e_sXMj"I>V;Pk`ц2c"CPՇ^y=8p?G!E; #?>Ԏ# 7bXz>V;Z{ƈ6(3/N#^+>#N==Ny}Tl7 :>;u#a y5C_p0X4?ή?v9S]ʼn?١£"WKjQ~oRtdW^a۴ I & 쩹@fJs;l0&A؃ܿ x1xD|kKզ-%Y ?8ju~aɨ^X[*7 .F`ה6ʠ~m;}5y3'T{+ާڽcFߎ=Ɏ%[(xO"%[k.%3]6] .Q .gm͙\}6a߉[?Qy_(tn׷9U^Dǧ.T&=vΎU蹗>3KtɞxxvB+ڸ&=}|/@}0 (j6oﱳf}5֩eyc ;[M=!0 Cf@fKTծTbRⵘ6w稠VΪ$2`'7CʳE"L:)?k~lVU{p+|ܶS0n{ ~oӈq˶shXB"o3m[of׺hoڼpXڔX? A: X~K\=*(ꨣ e-VKeFŵreLG[O m=zh851U=c"D:?@}R= ~EE3׬4Nrmq%#ԗl牓QRo9WuzT.W&t} aSd'gQ$J>y:{G~5*'x~LV^ט&RIO=CW8 \ktR37b,KIL'm^}J=|RI!wbɋNڼƧ*ObSg1"l(c|R!6uKi} _o@$6nCiJ~>Xo ;'o Zc}ocTN%7C?BoE0/}ԕ'k'Nn=z<)0,¸N4ٮb2BWDŽDIֶx k+^ڋ>MLc72?¶:^OtSϐgc #=q AMr1\gq vLlbg{Ķ؋nK^zK}3i7~'{X򢥄}g cƣ c oWI;<_؟߰x.Scc>={u<ϫtq;7c?cc ccc ƾ c?>G0+M|G{u#Fq.c (GuXYAq*d:7`Z>בu4G^y#uq^~u=-9KRG#ԑq'LI59&Gّo.C;Bw!^ck$ܟW]|vԊ$dY,6@<>|㗢}*^QqKLťRǥ߮oK,Xz~ĶRێs-Hs{;o2?;HcM8gDXyӁ͋~w(6wX 0ؼ@z*DHPߏ_-l^3\O5' 0ؼ7y*fDO 8\XiyJ LHk۔V8DŔO8~߅eKŔŘV)`,)SEAf,c̗0OXL)/J\m)R^0<lT_?Бz ߡ&Kz ' ,֔m߆-mJ=T/Í' ,֔}—q *3 DŚOj=ѯ7͘' ,֔}—,d;7Ñp[2û ?QԞ,l"^:̗0_<|ofy V+b~ 0_|62z|#曘oε3Zr ZH$;o\H+a)Ŀ%/{-nH{ε d 2(V@ );Jm/ZOg _:7f&a6?0|/0?`o3;y'?f"ay5o":;`2AXg ߿lscdt2j+<}Cx_[P "@_acHGy1Dr7<Z|c;XOi~dS7Z2Os?b>%N]${{zn;cǃ2bMu?X)ƺ\v0{<%3-bh;?dczc#-\Ӽ]{'g{&o+o{kfeěx{cg3<6ڼ!s~6D 6τsznfy V+r0^| 1oc~+ۘg<`72`ɩw2w37 !,]t>(! r$h`mQVv3{ F\Q{ƞz^zdW1 ;3 sQo_B85?7H?ΥCC79md=ӝ}y]ZZٺcox_R7*{w_BT=WunUW:χ<5恐/b$}~0wвx>PLƐkwEw|uȃ!*|67ZfV,'O1!3uf7-#0# w hOږ{hue_^L$>GÙ|>'+>ӏюf;:^b6奌\Ks,)^Xn vA|>cִ43vrW[E| gooӉjCJmq:o)ve!=-{WF,#G|U (үe >'&>F5o!⇈#~qxM1 q? F_4\m !5\mE$\lO#' d+_DjZgC~p˵2\m2!lۉ A|;wj+8fʻBpwj+!CpG W[y?~o#3 d+7v~lkk˜ni3~^^K^O)x}/bx} ^Ex}$׷Ok nw;7{3~x}G^ߖo$.}Sۉo'.z>P.]KKĻnjxqѳԶ?j[}k>3HZ~9v~P^߭ x@շԶT{#7ێV^Z/z > 7&V}^}^߶j[}_E=׷}>S ^]w'VrY &mO{!{flE^d\.x}2\m ^ =oVE6\| ^ߧ =IC>w .z>s$V߶.jDK俛x7qYx}5\|^g 'O\|^ߧ }m6fK{ ɾI۟d=]\g%ψMC:7||m畽>[>DMoMc}{N|+3#+xC mx&C2WR1\d纚+Crةn8hMyvy~|scS?*:+2'Fƿ#kwJa7>x!{9n>wZE148bcWj|Z]1?82kb狐oGƼ29!`|>Jy0)>EϦ\ }N>L9-Ϲ:$!Duʘ^K^Z[7c(5vI1+<}$^/Ǭ2)gNP쬠XV޻&6N{wZK}$.U]_ذ"ڕlketLד%73mIGزSϥtc1=[BRS TM9)kdEϔXET:Ȉjx?ǩڼ({oϡ<;/5H,>D̋)Nbۯ6OObQ鿏I8Ol>$Gb;gT)w{"^V&*+nPLR~](oWxC:_TZ9묥YTsXW>} aa$q[js3%-GP)goa^E{I3{(=3 ̫O~R1&~Z0fS^cX}2:ڧjQ|0x7X?WTfbXTqɱWK'{^g&׋Ui}㺟I' >i O|2 >` o6x1k)ߙf ~o7x iNw6xe ~3[ ?f >hA2.?i' 1G 70!2a610 0I9z;U;='(ݟ\?s%́<|]gCx~}wCϩ/q3 gg[>3o4Gx{>@g3N}$pwgUξ"p?$5q!x@3 {>HrZsgo;{V3ߜS_)p? xɜ`|ǝ8_8ɜ`|_cjWY뽽ҵ.WIC~h}@Zh}owZ6h};-Wٗ}~h}CZ}~Z@['RǠ} ZG}ZG}Z68yZeؗ"_ah}wZEh}!h}Ah}˾7S;Or+iLw+[]wZ.R_%c/-_˾~h}>h}GZ{-e}Ғ?`_{/B{ZK}˾Է?`_{jjjnַٗ^unw%oƏ}Ah}B[޿/-ٗc_uh}נOA%>lp$'߂ַR߯BUh}Kh >np~Zg}Zo@ h}F]DoqmlNtڳve3 *rm%̝ڣVN77=ܝ{skݩWd'ek!9Ci_CiMU)[S<Ӭ[< YWK֭ZCxQ.񪸄Ƌhr1{}sue e~3V;?T˴oy}hr9+=j˝4^2SF>5'/>rٵCL̘9m9q [mc^FsQIo'<_R' z1yϗHגcfg?Bһ1XmEIys y:g'ty%}Xz  )yݚ7M )]y[k3{9{CWz~/W7N5[8"Jl&߮zVB%-={H޹}e2FCye]oRWZ,JKMq"$seGϟss#ڝu8?8VC秫&~ ]"xe;m,sVEXXt l-H?MNqlsvhJSBEt!ޭXXl[yS,酌rX챸qY "b07z"cbqEZCXŹT^ug.syrH\oOav,2%q^2EZwZ911:$s(e͋ɗj"MFXd,[,.޼Xm>:_ʵ@)Klx.Bs8.'ߖ˝Yꦴ,so~Lzv4ی[3xʍ` F]͡v@1cӞeӻ+tf`:+Frx*?Drrtʿ^*]|cM=աwoD@\Gw>@*7{o9wι3 ml1ٸ V.EZ|QBEc{)_%2>KEާ mq\.oVa=ƊDK>|݀BrPlO8~¾}>PRɸ+f؅8/buY^ ^x_s~S$!s:7~㴟]P(|@ Tx[ިF*VU RxK^kK_qzu §i =+gsIG[xﲈe_V_PީN(E oTxk^**TE/yJ^ S:oP?YE[QVoU BO*I7*Q[O oVPATs NG~D~L] RIT)Rx>Vi+|X UYs9o-$8r.uȎ \s(ρ/s2揜kMї+ pPGI3g1ƾ-pv c7.ppKq2b뉓T1 t̤sM cw5O8nj71霓*f[1SI3ަnj9fcnc c{{{UpxAc1Cc*f|5njA_=>w=>Di]? >fp }{7 w[R8nWM[?Rr,<~\}X>[w+>oyK}c{'DZԷ8R6p-Oɱ7Wz.g}j.ןcoYK}W{շ ʱԷX[_K}coy9DZԷ~ \}7p4~\}wnp}\}WR\}Wap}\}w.p-߭z>(>6pɱԷ9k5ONN^ַ/RRK}c:p]9#RrX[8~\}?w;W#,> 0x±/Up*DZp}\}+_gycqp=>Ym.6Kr9Gy{5 j0m!f>{h[IrCNr}rU r*UJSe-\x9m$&C&kxW#xȩXWC@X , W'xȩ?>^9 xiX@킇o!gr}]+xk-\o/9M񚈷_Z`>~rZUj-\xm6kxmk<[ ,k'^!Z`>^9#xXC^CNr}^ roP3h-\oxC!kxCsyկ04`duf]wԽZrswZ|Q_བྷ}_s}S:埸h? XqwȌmt0jp8go1=qo/)'OۿïTG$87л>lLs-:a3iKIK>{T+Ak; 1,_;8FV77ߪfχOnlSWx-f?^K|OO,cl'%}OK1ryrڒ9{)+1rVzrSΓ1rl<9c\@9xr6ȹޓrn䬎ʓr~ݓ"FίyrP2OΒ978WsjmL9n^c?8}~ǵ)o%BZv/x-nqhm>크[{Dy*Lݖ5r!|ja-=YxM_ ֒xn% pu]]dtT};r'Lon\ϮƴIK㈵"_-gXo8Zd,^-soTuE\`Sk`-RխOio_zߡSx\?\bv4 Rg|0}9~$W!r3{g{zq;Gz{rkx8Ź·{\g?/9O;6FtD6Jc&!7OJo :|wf m\+<^["c.ڻ]&e b/!/#|)ȯ UeW*ɗ_C|%At-0Nj 6~ϙO NV28k9o^]+|n ?>N/v$En'ɿ@O^}ɿD~ɟ& !g?K~(sȟ=Wx-qljPoGI9p&p7-LĘGDZ>uѰ~KO(@يV|P|2g_rhciکqYs1WU*Ks2&x`g1;εS1}W&~Z3c1jrr?!xg&'x?f1g(·>y]^c9Y`[cL w:A`{ `{g`{w>^ ׂ5`{ |ϫjloߒQ|ZZZZ_*T/WsKaU\\*e^9*HO0EcO}<B(̓!Kv/JqXmxJfWtɼg]]O9- _7|y]MpL 9%>_}ܩfK[_yV)))%ɑfW}ѝݪSx"sigjj_7rTҎEwc<9$Mv* ;f:tDByYpL'B˭&w㚗|bkYErwBv}q*sNӪxޞ]vJ]U^fO.&[zuh> oa٦ ׮0۾gsUpܼٗ>RZLpf+"siWjq1Zg1:-Qo \tZZ Z]E|Nz Zd.->q/ZDCc"izk.'"kТn)O;yuZ>O*"si1~]ؠnc"i1q "si1~]ž ZiNZT+-K?b-EH1_4[jq|2X-^y_luir_Sx(:3BhV9!K%s U /^&BᗄW aa"aa#ƎNEbvCZi1~];~]N7_vqIH8p0#C#L' NI8p$(G Gf!&K8p<‰'N!J8}פm6r~*z^(c`p9׸ W3"`Ppʌ40'` Xh*L<̑y9>f&yHz;No3k5+77c$[^[ڻ|^jx뫅jh/௯UPf̙SU]4+uK֪Bt O2O)>tjSm}I ɿ>>ImT'_p}1hWS$MWqO:{~;drmmidUe}DyK _Ref450217149wM8.9Uctx%,Nk$sWjFUUTG5N#K욿rCe6 T6H'L#&HEv֊gk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|CgkkrKVn9UՑ:7pVUQ*"'e software handled by the Windrose Trajectory Model. Europe is represented by a 42 x 27 matrix of large cells, each 10000 km2. The outputs from the model are atmospheric concentrations and deposition of emitted species and secondary pollutants in each grid cell. All input data required to run the Windrose Trajectory Model are provided by the EcoSense database. VI. PUBLIC HEALTH EFFECTS Combustion processes cause an increase in the concentration of certain atmospheric pollutants that might be causing aԘؘ֘xz|ޙV$ܘޘ"$&|~,.0 j[6 j]$&PP/ =!@ "@ # $ %k:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|Cgk:ov(|FM"]Oi.5#W5F&Vns~^hrX-(h㤑+ұ}\y;Rɪr^G-ekr z߭:ΪIV4T׮M}gW=^./|ZzVetsGO\jwUw.s7~w]ku_c#}$UoRhz=:Ӏy}W^hp C1Z<$PD=U\UUUUzTt# ?ݰGB0t# ?ݰGB0 [4@4Normal $ hmH nH 8@8 Heading 1 $$@&5CJ88 Heading 2 $<@&6CJ<@< Heading 3$@&5CJOJQJ>@> Heading 4$@&5B*CJOJQJ>@> Heading 5$@&56CJOJQJ>@> Heading 6$@&6B*CJOJQJ8@8 Heading 7 $@&6CJ<A@<Default Paragraph Font>B@> Body Text & F mH 6"@6Caption $xx5CJ.P. Body Text 2$.Q@". Body Text 3CJ4C24Body Text Indent~~UVWXefgxyz)*+CD       a f^_`opq}!Y%Z%[%v%w%x%*.M112233)333A3B3]3^3_3`3a3t3|333333333333333333333344444!4"464<4N4X4Y4e4f4y444444444444444444445 5 5"5&585B5C5W5X5k5u5v5555555555555555#67D7}7~77777<<2<9<Y<|<}<P=u>v>w>>>>@TAUAcAxAyAAAAAAAAAAAAA BBBB#B)B/B0B?BCBGBHBRBXB^BdBjBkBxB{BBBBBBBBBBBBBBBBBBBBBBBBQEGGGGeHJJJKKKK KMMMMPPWQSWqWrWvW{WWWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXX"X#X$X%X9X:X;XXOXTXYX_XfXgXkXpXuX{XXXXXXXXXXXXXXXXXXXXXY YYYYY&Y'Y(Y)Y*Y+Y/Y4Y9Y=Y@YAYSYXY]Y^Y_Y`YsYtYuYvYwYxY|YYYYYYYYYYYYYYYYYY,ZZ [ [[ [![\\\\\\\\\\\\\\] ]]]]]!]"]+]1]7]8]9]`9b:b;b}b~bbUf7k8k:k;kkooooqo5q6q:q;q=q>qq/t0t1tAtBtCtxo{I}J}K}W}X}Y}}}}}}}.~/~0~~~~~          gg g g g + L+@+@+@+@+@+@+@+@+@+@+L+L+L+@+@+@LLLLLL@L`L`L`L`L`@LLLL@@@@[%@[%@[%@[%@[%@[%@[%@[%[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@L7L7L7L7@7@7@7@7@7@7@7@7@7@@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@@J@J@J@J@J@J@J@JLJ @J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@JLJLJ@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@@;b@;b@;b;b;b;b@;b;b;b;bL;bL;b ;b ;b 1t 1t 1t 1t 1t 1t 1t 1t 1t 1t1t1t1t1t1t1t1t1t1t1td7X?KT\`cm>uRVDľ\&(6 F4^JQh`>yܘcio{#&,38:CJKM  !)777!888B999#:BERFFFN{[[[$\O\\]@]s]]]``8asJEPVDdPīh,ޭ:ll0npR D".">PDPh,:  l l!"0##3MMMnNNpORPP QDQQW"XX.|dfgjlmpqstvwxy|}!"$%'()*+-./01245679;<=>?@ABDEFGHILN57y889};EFO[<\\u]`}fKehknruz~Unknown Tea KovacevicHELEN MARTINEZuserS{& = ? 222<-</<@@@@AAGGGHHHMMMPPPPQQSTTW,W.W\\\-^U^]^0_X_`_`a aChkhthLiti}iBkYk[kdmmmnnn o#o%oEq\q^qqqr~t t t:t tt t tt tt t tttttt ttt t tt2$Jh/,2$ P5#"$PmZEYɄta"$H'.#3I x"$M#ܮt'\T "$P߼h*ڧ "$i)kt*"$kf+QL&("$ g7)G[{8q/"$|>|=̮Dʲ "$zj|N veQ "$ R2De"$E?_ "$ 䄑 qHaOՃ0 "$\]RtF>3} "$n6a^^g "$$X8fNIi"$ ? @ ef]^`eno|!}![%`%u%v%**..L1M111222223(333@3A3B3]3_3`3a3{333333333333333333333344444 4!4"4;4N4W4X4Y4e4y444444444444444444445 5 5 5%585A5B5C5W5k5t5u5v5555555555555555"6#6&677D7G7H7W7}77777<<<t>u>w>~>>>@@@@@@AAAPEQEGGGGGGHHHJJJJ KKKKMMMMMPPPPQQQTTTT-W.W/WY [[ [\\\V^\^]^^^Y___`_a_a a a a;b?b|b}bTfUfggggh h:hlhshthuhui|i}i6k7k8k9k;kZk[k\kmmmnnnooo$o%o&o6q7q8q9q:q;qq]q^q_qqrrr1t6t@tAtI}J}K}L}V}W}X}Y}}}}}}}-~.~/~~~~~~a&aa`Ξ`Оa0aP```a`Ɵ`ȟ`ʟ`̟aa```a`v`za|a``aa̮aa,a.`0a6`jal`aa¯aį`a`N`PaR`TaV`XaZ`\a^```badaa`ava```a``aa```2`4a8a@```` aa```TaV`8a:`a`a`R`Taa``(`va````````aB`N`P`R`Ta|````a````a````a `,`.`0`2aZ`f`h`j`a````a`*`,`.`0a:`L`N`P`Ra\`n`p`r`a````a(`:`<`>`pa````a` ` ` `: `> `@ `B `x a ` ` ` ` a ` ` a a `j al `r aX `^ a a a ` ` a$ a0 `x `z `T`V`X``aa"``aa a a ` a aJ aL `N `(a(a.a.a.a.`.`.a\.a^.``.`3`3a3a3`@4`B4`b4`d4`29`49ax9az9`|9ax?a?a?`?a,@a.@`0@aJFaVFaXF`ZFaLaL`L`Q`>T`dT`fTabWadW`fWaZaZaZaZa\a\a\`\a0`a<`a>``@`abab`c` c`jajamamamama.na@nanana oaoaoaqaqa q`t`tat`tatatat`ta@yaLyaNya|a|` |a*|`,|a0|an|ap|`r|aaa``a``aaa`aa(a*`,aa````aa`Ҙ`Ԙ`֘aؘ`v`x`z`ܙ`ޙ````````GTimes New Roman5Symbol3& ArialSTimesTimes New Roman"h(9B&B&[h5dExternal costs Pliva d.d. Tea KovacevicMct v?PMct v?PMct v?PMct v?PMct v?PMct v?PMct v?P,UEQO4sC+Hc{U5G"EEEEN dOy̽i'bK+Sk]}g.$LSڪ:9w^Ɔjvݝ׷t)_ %3)e`{ڭߑ\D]UUQ47m%bwSTMpJn#\Hњ.*MVl=_+j_*wQU5]^iӆy>KIFhģťZ"s/;wꈺ4uG5Y ,bjbjWW &==~]NNN----|.dT 24444:;Le;(CCCCCCC$UWtD;::;;D5>NN44l2Z5>5>5>;TNR44CNNNN;C5>5>B:wCg"C41"|)-<TC       !"#$%&'()*+,-/0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry  F *ޖ"|Data DWordDocument1<<@H @8&ObjectPool8pHH!b|{Jb|Equation Native 1Table]XSummaryInformation( DocumentSummaryInformation8CompObj j0Table \V      !02456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~  0 < H T`hpxExternal costsxte Pliva d.d.sliv Normal.dotsTea Kovacevic20 Microsoft Word 8.0@*4E @n|@ז@h|[h՜.+,D՜.+,D hp   FER-ZVNEc5j External costs Title 6> _PID_GUIDAN{A3F53F62-FB06-11D2-872A-00609757A1E1}  FMicrosoft Word Document MSWordDocWord.Document.89qΐ cI0gI VSL=v YOLL (1+r) tt=0T 1 " FMicrosoft Equation 3.0 DS Equation Equation.39qOh+'0 W     !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTU.X]^_`abcdefghijklmnopqrstuvwxyz{|}~_982428172F@|@|Ole CompObjfObjInfo   !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~13dverse health effects within the general public. There is now a broad-based body of evidence showing small but definite increases in risks associated with increases in air pollution, with no convincing evidence of threshold. Acute health effects, which occur on the same day as increases in air pollution or very soon thereafter, should be distinguished from the chronic or delayed effects of possible long-term exposure. There are less exposure-response functions for chronic effects since they are more difficult to estimate than the acute ones. It should be stressed that the acute mortality effects occur predominantly in older people, almost certainly with serious pre-existing health problems, though the precise mechanism of action is not yet resolved. Length of life lost in those who die prematurely following higher pollution days is also unknown, but is likely to be short  a few weeks or months. Averaged reduced life expectancy among those who die prematurely from chronic effects of air pollution is likely to be much greater and is measured in years. The incremental air pollution attributable to power generation is a mixture of pollutants emitted from a power plant and those formed subsequently in atmospheric chemical reactions. Complex studies were made to disaggregate that mixture and determine separate exposure-response functions for each pollutant (particles, SO2, NOx and ozone). Most of the exposure-response functions used in the EcoSense model are chosen from studies which showed statistically significant relationship between pollutant and health endpoint and which eliminated possible confounding factors due to other pollutants. The strength of these studies is that relationships, expressed as percentage change in health effect per unit exposure, seem remarkably invariant to changes in population, location and pollution mixtures. For ease of implementation, the exposure-response functions are linearized, assuming independence of background levels and no threshold existence. Extrapolation of exposure-response functions to very low pollution increments, particularly at distances far away from source, without a threshold, may lead to an overestimation of effects. Quantitative relationships have been established linking air pollution with a number of health endpoints. Health impacts are divided into three categories: mortality, morbidity and accidents. Only first two categories are observed here since they refer to normal operation of a power plant. It is dealt with premature mortality (acute and chronic), restricted activity days, hospital admissions due to respiratory and cerebrovascular problems, as well as emergency room visits due to exacerbation of asthma and chronic obstructive pulmonary disease (COPD). Here is how additional mortality and restricted activity days due to air pollution can be calculated, based on the given exposure-response functions: Mortality (number of cases) = exposure-response slope/100 ( baseline mortality ( population of the observed area ( pollutant concentration increase ((g/m3). Restricted activity days (number of days) = exposure-response slope/100 ( population of the observed area ( percentage of adults ( pollutant concentration increase ((g/m3). Table  SEQ Table \* ARABIC 1 Summary of exposure-response functions and monetary values used here (1( Impact CategoryMonetary value (ECU)(1)Pollutante-r slope (2)Receptor: Total populationAcute mortality(3)155.000PM10 and nitrates0,040%PM2,5 and sulfates0,068%SO20,072%NOx0,034%Chronic mortality(3)83.000PM10 and nitrates0,390%PM2,5 and sulfates0,640%Hospital admissions7.870PM10 and nitrates2,07(10-6respiratoryPM2,5 and sulfates3,46(10-6SO22,04(10-6NOx2,34(10-6Hospital admissions7.870PM10 and nitrates5,04(10-6cerebrovascularPM2,5 and sulfates8,04(10-6Emergency room visits223PM10 and nitrates13,7(10-6for asthma and COPDPM2,5 and sulfates22,8(10-6Receptor: Adults(4)Restricted activity days75PM10 and nitrates0,025PM2,5 and sulfates0,042(1) mortality values given at a discount rate of 3%, based on YOLL. (2) slope of the exposure-response function is expressed in percentage change in annual mortality rate per unit of pollutant concentration increase (% change per (g/m3) for mortality, while in number of events per person per (g/m3 for morbidity. (3) baseline mortality in Croatia is 1,1%. (4) age group 14-65, in Croatia 68% of total population. VII. MONETARY VALUATION OF HEALTH EFFECTS Health impacts are generally valued more highly than the conventional economic approach would suggest. Mortality impacts can be valued based on the willingness to pay (WTP) for reduction of the risk of death, or on the willingness to accept compensation (WTA) for an increase in risk. WTP or WTA is converted into the value of statistical life (VSL) dividing it by the change in risk. For example, if the estimated WTP is ECU 100 for a reduction in the risk of death of 10-4, the value of statistical life is estimated at 1 million ECU. However, increased air pollution can not actually cause 'additional' deaths  it can only reduce life expectancy slightly. For deaths arising from illnesses linked to air pollution it is recommended to use years of life lost (YOLL) calculation, while VSL approach only for valuing fatal accidents and cases where general population is affected and not only risk groups. Value of one year of life lost (vYOLL) can be determined from the VSL estimate, applying the formula below, if one knows the age of the reference group and the discount rate to be applied to present vs. future years of life.  EMBED Equation.3 , where: r  discount rate (usually 3%), Tl  number of years of life lost. If e.g. life expectancy for a prime age male is assumed 37 years and if VSL equals 3,1 million ECU, value of YOLL turns out around 100.000 ECU with zero discount rate, i.e. 134.000 ECU with discount rate of 3%. Morbidity impacts valuation is based on the cost of illness, that comprises the value of time lost due to the illness (valued through lost wages), the value of the lost utility because of pain and suffering and the costs of any expenditures on averting and mitigating consequences of illness. VIII. APPLICATION OF THE IMPACT PATHWAY METHODOLOGY ON CROATIAN POWER SYSTEM The aim of the analysis made here is to estimate costs of health damages through air pollution caused by electricity generation in Croatia. Two types of fossil-fired power plants are observed, one coal and one natural gas fired facility, since they are among candidates for future power system expansion. Both power plants are assumed to comply with domestic and European Union s emission standards, so the emission rates equal the upper emission limits. Basic technical end environmental data are given in  REF _Ref450279940 \h  \* MERGEFORMAT Table 2. Table  SEQ Table \* ARABIC 2 Technical data and emission rates of the analyzed power plants Coal facilityNatural gas facilityGross/net capacity380/350 MW370/350 MWHours on full load6570 h/yr6570 h/yrFlue gas volume1,2E+6 m3/h2,1E+6 m3/hFlue gas temperature403 K403 KStack height200 m200 mStack diameter6 m6 mEmissionsmg/m3g/kWhmg/m3g/kWhParticulates500,16800SO24001,34300NOx6502,1821000,6CO22,45E+5822,90,43E+5258,55 Both facilities are assumed to be located in the densely populated urban area of Zagreb, the Croatian capital. Geographical coordinates of the site are 16( E and 45,8( N. Impact analysis on the local level, i.e. within 50 km from the source, displays a local (so called fine) grid with 100 km2 large cells, the average pollutant increment ((g/m3) in each cell and the total number of health events in the whole local grid. To calculate atmospheric dispersion on the local level, hourly meteorological data for the plant site are required, while for estimation of health impact population density in each cell of the local grid is needed. The basic meteorological data for Zagreb  monthly temperature extremes and frequency of wind speeds and wind directions (so called windrose) in the 15-year sequence  are obtained from the Croatian State Meteorological and Hydrological Service. Since no continuous measurements of wind and temperature were available, and because some additional parameters describing atmospheric conditions are needed for local dispersion modeling, meteorological data set had to be constructed before imported into the EcoSense. Average annual windrose for Zagreb and an approximation of daily temperature curve for each season are given in  REF _Ref450368150 \h  \* MERGEFORMAT Figure 2. Figure  SEQ Figure \* ARABIC 2 Annual windrose and approximated temperature daily flow at Zagreb site Zagreb is not a very windy area, which can be concluded from rather high frequency of calms (13%). The prevailing winds are from north (19%) and northeast (11%). The largest average wind speeds, occurring in northeasterly and southwesterly directions, do not exceed 3 m/s (at 10 m above ground). According to the demographic data for Zagreb and Croatia, population density in the outer city area (comprising 4 cells around the plant, altogether 400 km2) is set to 3000 people/km2, while in the remaining 96 cells to 100 people/km2. Average population density in Croatia equals 85 inhabitants/km2. IX. ESTIMATION OF EXTERNAL COSTS DUE TO OPERATION OF THE ANALYZED POWER PLANTS Local analysis Based on power plants emission rates and local meteorological data, average annual concentrations of SO2, NOx and particulates on the local level were calculated, using the ISCST2 local dispersion model, incorporated in EcoSense. Spatial distributions of pollutant increments within 50 km of the coal power plant are shown in the figures below. The highest concentrations occur in the very grid cell where the plant is situated and in cells downwind the stack, i.e. southwest from the plant. The highest concentration of particulate matter amounts to 0,083 (g/m3, the highest NOx is 1,1 (g/m3 while SO2 0,7 (g/m3.  Figure  SEQ Figure \* ARABIC 3 Ambient concentration increase of SO2 and NOx due to coal power plant To calculate health impacts in the analyzed area, the concentration field for each pollutant has to be multiplied by the population field and the appropriate exposure-response coefficient. Health impacts have no common measure, mortality is expressed either in number of cases or in years of life lost, while morbidity in number of events or number of days. To sum them all up in a single number, health effects should be monetized, i.e. multiplied by their monetary values. Spatial distribution of the monetized health damage due to particulates-caused pollution, per unit of electricity generated in the power plant, is shown on the right-hand side of  REF _Ref450112363 \h  \* MERGEFORMAT Figure 4. Mortality impacts are here valued using YOLL.  Figure  SEQ Figure \* ARABIC 4 Spatial distribution of particulates concentration and monetized health damages The level of health effects decisively depends on the number of people affected. Here the largest health damages occur in the four grid cells around the power plant, where the population density is 3000 persons/km2 (densely populated urban area). Health damages in other grid cells are almost negligible, due to 30 times lower population density and lower pollution increments at larger distances from source. Health damages also much depend on the way mortality is valued  if calculated via VSL damages are several times higher than via YOLL. The largest portion of damage costs, over 90%, account for mortality endpoints, specially if calculated via VSL.  REF _Ref450144800 \h  \* MERGEFORMAT Table 3 gives local damage (external) costs per unit of electricity produced and of pollutant emitted from a coal and a gas fired power plant. Total local costs due to air pollution (particulates, SO2 and NOx), amount to around 9 mECU/kWh via VSL, i.e. 1,1 mECU/kWh via YOLL. If the population density in the whole observed area equaled the average value for Croatia (85/km2), the damage costs would be only 0,61 mECU/kWh (VSL) i.e. 0,08 mECU/kWh (YOLL). Health impacts of the gas-fired power plant originate only from NOx emissions. Total health damages on the local level amount to only 0,5 mECU/kWh (VSL), i.e. 0,02 mECU/kWh (YOLL). With the average population density of 85 inhab/km2, health impacts and the associated damage costs would be only 0,03 mECU/kWh. Table  SEQ Table \* ARABIC 3 Damage costs of air pollution caused by electricity generation * VSLYOLLVSLYOLL(mECU/kWh)(ECU/t)Coal local scaleParticulates2,080,8412.4145.003SO23,880,152.889110NOx2,970,121.36253Total local costs8,941,10Coal regional scaleParticulates (a)0,641,693.82510.082SO28,380,326.237235NOx4,350,161.99375Sulfates (a)3,7310,162.777 (b)7.568 (b)Nitrates (a)6,7717,983.101 (b)8.240 (b)Total regional costs23,8630,32Gas local scaleNOx0,500,0283533Total local costs0,500,02Gas regional scaleNOx1,150,051.91576Nitrates (a)2,035,383.383 (b)8.962 (b)Total regional costs3,185,42* health damage due to tropospheric ozone and global warming is not included. (a) VSL-based chronic mortality due to regional-level particulates, sulfates and nitrates is not quantified in EcoSense, so the YOLL value is larger. (b) sulfates are expressed per ton of SO2, while nitrates per ton of NOx. Regional analysis Regional analysis of health impacts caused by operation of the two analyzed power plants was conducted for the region of Europe. Since meteorological and population data for the whole of Europe are incorporated in the EcoSense model, the only necessary input data for the regional analysis were power plant s latitude and longitude and emission rates. Table  SEQ Table \* ARABIC 4 Maximal regional concentrations ((g/m3) CoalNatural gasParticulates0,007-SO20,052-NOx0,0690,019Sulfates0,008-Nitrates0,0280,008 According to the European-wide atmospheric transport and distribution, there is an increase in ambient concentrations predominantly in the north and northeast from Croatia (Austria, Hungary, Slovakia). Maximal pollutant increments are given in  REF _Ref450354590 \h  \* MERGEFORMAT Table 4. Health impact distribution depends on the population density, and is similar to the concentration field. Health damage costs on the European level, due to operation of the analyzed power plants, are given in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3. They are much larger than local damage costs, due to more people affected. Since VSL-based chronic mortality is not quantified on the regional level, YOLL-based mortality (and therefore total damage costs) is larger. Total regional health damage amounts to 30,3 mECU/kWh for the coal power plant, and 5,4 mECU/kWh for the gas power plant. It has to be stressed the figures in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3 include neither NOx damage through ozone nor CO2 damage through global warming. There are suggestions to set the average ozone damage for the whole Europe to 1500 ECU/t NO2, (3(. The range of suggested CO2 damage cost is very broad (3,8-139 ECU/t CO2), with the geometric mean estimate of 29 ECU/t. X. INCORPORATING DAMAGE COSTS IN POWER SYSTEM EXPANSION PLANNING Although the calculated damage costs do not necessarily constitute externalities in their entirety, they can be used as good indicators of external costs. External costs can serve as an additional criterion for the evaluation of different energy scenarios, thus introducing the environmental aspects into the social cost optimization process. Only the air pollution ( health impact pathway was observed here, i.e. only impacts of coal and natural gas combustion. Other fuel cycle steps and externalities of nuclear and hydro facilities are not taken into account. After having external costs estimated for two more or less representative power plants (reference technologies and rather a representative location), an attempt has been made to extrapolate them to the whole electricity sector and include in the planning process. Of course, it is a rather hypothetical exercise intended to give only a rough insight in what the consequences of external cost internalization might be. Two extreme scenarios of Croatian power system expansion are observed: one with unlimited and the other one with very limited availability of natural gas, those two spanning the expansion options range (4(. The question is how to meet the forecasted electricity demand at lowest possible cost, i.e. what kind of new units and in what dynamics should be built in the next 30 years. Candidate non(hydro power plants are coal, gas and nuclear facilities, with annualized production costs given in  REF _Ref450216288 \h  \* MERGEFORMAT Figure 5. Since the gas fired power plants are the cheapest, they are the first to enter the optimal capacity mix, so if gas availability is unconstrained the optimal expansion plan will constitute of gas fired units only ( REF _Ref450217149 \h  \* MERGEFORMAT Figure 6, fist bar on the left). If on the other hand only a small part (20% in the scenario gas-min) of the total capacity needs can be gas fuelled, the rest has to be met by coal and nuclear units (almost 40% each, as shown in the fourth bar from the left). That optimization result is based on traditional, i.e. private costs of electricity, which include investment cost, fuel cost, operation and maintenance costs and costs of unserved energy. Figure  SEQ Figure \* ARABIC 5 Annualized production costs with and without external costs added What happens if external costs are added to private costs? Since external costs are proportional to emissions, they should be added to variable component of the production costs, which is reflected through lifting up the right-hand side of the cost curve. Because only the air pollution damages were quantified here, fossil fired power plants are the only ones to experience increase in costs. If local external costs are added, following the values in  REF _Ref450144800 \h  \* MERGEFORMAT Table 3, cost increase is almost negligible. The capacity structure in both scenarios remains practically unchanged with respect to the base case, except for the slight increase in hydro capacity. (Base case refers to private cost only). That can be seen comparing the first two bars, i.e. the fourth and fifth bar in  REF _Ref450217149 \h  \* MERGEFORMAT Figure 6. Figure  SEQ Figure \* ARABIC 6 Optimal capacity mixes and cumulative emissions in the analyzed scenarios However, if regional external costs are added, costs of coal units dramatically rise (at full load they get more than doubled), that having large consequences on the optimal capacity structure. The absolute advantage of gas units is also shaken  even with unlimited natural gas supply, two nuclear units enter the optimal expansion plan. If natural gas is limited, as much as four nuclear units are added to the system (almost 70% of total capacity). Figure  SEQ Figure \* ARABIC 7 Emissions in the analyzed scenarios Emission curves for three gas-max cases and three gas-min cases are given in  REF _Ref450217149 \h  \* MERGEFORMAT Figure 6. The base case and the case with local external costs have the same emission curves, while the one with regional external costs included sits much lower. Optimal solution is much more affected by external costs if there is a limited quantity of natural gas, i.e. competition existing only between coal and nuclear facilities. Having the regional external costs included in the planning process leads once to four times lower emissions (that if natural gas is limited), and another time to only 30% lower emissions (that if natural gas is unconstrained). XI. CONCLUSION External costs of electricity represent the monetary value of the environmental damage caused by electricity generation. Evaluation of externalities, better say damages, using the impact pathway approach is the most comprehensive but also a very site-specific routine. Since this paper is one of the first attempts to evaluate electricity externalities in Croatian power system, the focus was put on priority impacts for Croatia. Those are health effects of air pollution caused by coal and gas fired facilities, which are candidates for construction in the following 30 years. Damages linked to coal power plants are much larger than those linked to gas fired facilities, since the latter are responsible only for NOx emission and nitrates. The largest share in the damage costs accounts for mortality effects. The highest damages are attributable to particulate matter, on local level directly while on the regional level in the form of sulfates and nitrates. Health damages highly depend on the number of people affected  that is why local damages (within 50 km from the source) are much lower than on the European scale. When incorporated into electricity system expansion planning, the local external costs do not significantly influence the optimal capacity mix, but the regional external costs do so in a great deal. With regional external costs added, competitiveness of coal units gets largely reduced, so they lose battle with nuclear units. Even the absolute priority of gas units is disturbed and some room in the optimal capacity mix opens for nuclear power. It has to be stressed that external costs of coal power plants can be lowered by further reducing their emissions, i.e. by applying more efficient abatement technologies already available on the market. Of course, that would induce some additional direct costs. A particularly important question here is the selection of spatial boundaries within which the external costs should be internalized and imposed on the polluter. Numerous analyses proved it is due to pollutants nature necessary to capture impacts as fully as possible. However, it is very important to define geographical scope within which those impacts should be taken into account, since that can seriously influence decision making in the country of emissions origin. REFERENCES (1( ExternE - Externalities of Energy, EC EUR 16521 EN, DG XII, Brussels, 1995. (2( EcoSense, Version 2.0, IER, Stuttgart, 1997. (3( ExternE - Externalities of Energy, EC EUR 16523 EN, DG XII, Brussels, 1998. (4( D. Feretic, Z. Tomsic, T. Kovacevic, M. Bozicevic: Croatia MESPO Report, research study prepared for the IAEA Wienna, Faculty of electrical engineering and computing, Zagreb, 1999. xz|4 6 l   P $$$$$$$$$$$ & F P R V Z ^ b d  D$USQQE$$T8\O B $$h$$x$ $>x$E$$T8\O B Drtv&***+++436383333 ;BBBCCC $ & F $ & F r!!!!.)0)8):)++,,,-,-.-\-^-------....//z/|/^8`8H9J9R9T9@@NNNNVWZZ4[6[^[`[[[[[[[[L\\\\\\\D]F]L]N]V]b]d]]]]] ^"^$^ j[CJ CJmHnH jCJUCJ jm j6 OJQJmH H*H* j] j[PCVL:UZ[T]V](^H^x^^^^||E$$T8\  $$ & F$  $ & F$ $ & F   & Fx   & F  $^&^(^p^v^^^^^^_ _"_&_Z_`_______``8`>````````` a"a&a*a6a8aBaDaHaLaXaZadafajanaaaaaaab b0b2b6b:bvbzbbbbbbbcc ccc2c8cBc~ccccccldrde jCJCJH*6CJCJmH CJH*CJCJ j]CJV^^^^^^__B_P_ $ & F$ E$$T8\  $$ & F$  $ & F<$  P_R_T_V_|_____________t88 $$ & F$  $ & F$ E$$T8\ ___ `.`0`2`4`Z`h`t $ & F$ E$$T8\  $$ & F$  $ & F$  h`j````````a,aXE$$T8\  $$ & F$  $ & F$ E$$T8\  ,a.a0a2a:aNaPaRaTa\aparaaaaaDD $ & F$  $$ & F$  $ & F$ E$$T8\ aabb(bbjbrbbbXE$$T8\  $$ & F$  $ & F$ E$$T8\  bbbbbcc:cX`J $ & F<$ E$$T8\  $$ & F$  $ & F$ E$$T8\ :cc@cBctczccc $$ & F$  $ & F$ E$$T8\ $$ & F<$ cccccccldp]K$ & Fex E$$T8\  $ & F$   & F$ E$$T8\ eeee.f0f6f8fXf^fff gzg.k2knnXpZppppppp qryyyyyyz z zzzzHzJzLzNzz{{||||||||||6}6B*CJmH B*CJH*mH  B*CJmH  CJmHnH jCJUCJmHnHj` UH* jEHUj : UV jUH*OJQJmH H*OJQJmH  OJQJmH CJH*CJ jmCJ9ldXff g"g$gzg|g~gVpXppppq qruuuuu $ & F   & F $ & Fxx $ & F  & Fe uuzzzz{{>{T{j{l{c:$$TFwpi<$$T4Fwpi$$$$$$  & F  $ & F  l{{{{{{{ ||8|D|P|R|l|x||||||||h`:$$TFwpi$$$$$||||||}}(},}0}l$$R$$T4rws pli$$$ 0}2}:}B}N}R}V}X}`}h}t}|}}}}}}}L\$$$$$$$$R$$T4rws pli6}8}\}^}}}}tv|~܇އ,.Z\^`vxBFd68@B’Ēʒ̒&(.06H*565 CJmHnH jCJUCJmH jZ UmHmHnHj U jU jmH* jB* B*CJmH B*CJH*mH D}}}}Ȃ}rpe  & Fx  $$l $ & F$   & F7   & F  & F R$$T4rws pli$$ BDFdf46: ԚF $$$$$x $$ & Fx   & Fx   & F  $ & F  $ & F  & F 68:HJvxz|Ɠȓ֓ؓ &(TVvx*,.0Ԛ~&(HJVXZڡܡ68^`FRT~ 02Z|ԧB*CJCJ6CJH*jOUH* j8UmHmHnHj38U jUCJH* CJmHnH jCJUCJ jUmHD$.02HXZ|~TiXd^^$$$$<$$T4F1A$P$$Tr1 }A$$$ §Χ$$$$$R$$T4r1 }A$$$ΧЧا *02V`jlnd`|$$$$$$P$$Tr1 }Aԧ֧2Vp¨*,hn©ȩ 4RZprʪ̪ X^ȫ~8:>Bf(46`b jCJUCJ56CJH*CJH*B*CJOJQJ5CJB*B*CJOJQJ CJOJQJ 56CJ B*CJH* 6B*CJCJB*CJ B*CJH*DnpĨdQJ$$R$$T4r1 }A$$$$P$$Tr1 }AĨΨب$&.8BNTVpd`$$P$$Tr1 }A$$$pzʩԩ 4@LNPRT$$$P$$Tr1 }A$$$Rrtvxz|X$$R$$T4r1 }A$$$$ ̪֪ |T`M$$P$$Tr1 }A$$$$P$$Tr1 }A (2>D`$$R$$T4r1 }A$$$ DF`jtȫҫܫޫ$$$$$$P$$Tr1 }A ~>@Bfh(ı{wwtnn$$$$ $ & F   & F<   & F<   & Fx P$$Tr1 }A bdfhܱޱ(*дҴ޴ֶض޹ .0<>@fhڻܻ46dfhj j]mH j[mHmH j j] j[jPUjPUmHnHjOU jUH*mH CJH* jmCJCJ 56CJ jCJU CJmHnH>ıܱޱ "X4<$$Tl4F O<$$Tl4F O$$$ "$,8DFXdhj|DHX|<$$Tl4F O$$$$$<$$Tl4F O  "$d(*. $$ & F$   & Fx $$l$$ & F$  $ & F   & F  & F j  "bd>@LNP "*,.0>@lnprüʷü j2aUmHj`UmHj8`UmHCJmH CJmHnH jCJUCJmH  jRUmHjQUmHmHnHj QUmH jUmH j-mHmH=.0.x $$$T8 $$ & F$ $$Tlr.(*,FH"$&|~,.06 j] j[5 hmH nHH*mHnHjUmH jUmH CJmHnH jCJUmH  jUmH jUmH ju{UmH jqUmHmHCJ=rmmidUe}DyK _Ref450217149}DyK _Ref450186314&Dd!YB  S UAb:qt!)['%l[nd:qt!)['%PNG  IHDRh^#gAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_IDATx_hZ'N@ )Z`JRQֵGA(j5JDH 8A )Bz3(bb.n3aڦCؐPyٝ}O*}+uhHk5 Q }u]tE׮=]?n Op$c=# {{OՃݠd"!>zoWWו^Q.JWooWɗ?( )M& /@@W=]_ Ua՞^*"K+|!BIt}-K=Q %7(T+G, K?$g lÅZ(_o2rX*t$Re`WW%X«_|-QRA! yle(ZJI%Ri!HAunfİXAQ<>:4\|fmqqbqX H4 )&g G!\_ 5,FO`YN'P$H(Kz}}KpKCr%3gyʗJ4Ny\\\:&lN\\r: WȟLCHрh |y#5/J|:],m4tj0BL2BijnH"SihIE$¶/qK,1VjToWsIjs;r>X״yGRV.K|Uv }ՅD3LiccрjqsDXV׊-VWWiX4(,m21hZ9,K &/p Pvxkk#ϯnlT\ējmcmZfZ)H%r:af6R& _ |IevKOEp<eյFcV-.kk[$4gRRcrLMZȚt:'/9M:ӧm&(ac#bqxkZ.k'>*л.e}iJ,; >l W[ZTol=ndĖ5 Id{\N .B}[z鳧XColAlxX[pk[[Oj>ZMVGB(1'qeoH %e- ={ B}QK2| EkzTp8d6`qL}=5dyvcWRX/rfcsʹRn4Z O:8ˤ8wge< Kէ/5zi@#R6Y.&jVjGJ^p!jūS9 dU +߁?NN[-mJx4LjmZ*Iu8XP߁j R6g1V:==ze7V7 ^_HISW뵵r6TjZY甓 w*k eik2j1yJNH{fg=Ct&MlZAЧp\k0)͸gB^V20J"NYm3뚞va_–T$B=I^ZRe20F ̣#dR.3xpBd6jlvN;I\( 2R..'2Tf+d‘JWPJe\6N@ɇ-RҀBG߽k',MKfr+FD2bd,EX73Z(#Q+"`_bxCML56s%.D$rbt[JrEp&\( B|鐝 s_]CkGhpNmV?\J&qgX&łnl0 `ZXZj1W]'I@P6tZ5FنC7ڡ/9"j%I\S~Eb\aQTup(wQ{CL:/lf=cqNOB\,lr)p:pa0 JzeQѯ͝wGA 6i6h嚝L .#Q|3HU: Gb :e1!@ wmӶZqbz Eb8?@ .&bKK9֍zq\YS(\xzل"DXttJ+8|~xqh8L%+ O8G z$TVUr>w0vGEZ't6뙶F'RNHs4%ST*a)̰H"Uh .! Bbgs߽kEZڿ<bBR&LD  !d(¨k&嶻Ao~L)a[a>?Vv`--%a?] CxJe%BR A$j&L/(1A|t|ttoZmg矶9,<[\r`š; ^0R$) hz%hnr'N;)9YԴgVVV+9 \e P/S˹Ҽ76V{Yqz.d Œ\&Z,Wḣy 9U;z1t,JE2L&8i_*?y_{{Ouzn.;͌+A b1p'cbgfCem/n;{誣Cوldd@z Qa $ Rny#uSP4EK^v~>zYL#d%-ͻ޾{Oo{~Đ'`ׯ dC7ZL:ܜgriI'KK>?I&RH$#igYuyg\^vEH=q[hk~W^ؘL*U(H:cpƆTd6X:dG"q k;Sv pf@Km~gr2222vsL6&BS.Z!M>6(KRXO:5ウKaXz.°A{Hڊ(ԔXL:qks nh&cv)J]V˴n;SS|: O]tn}+@s&R1bNLN'^dNl,ae)sr^2]y[/\s^E|G*90260'lV+\! ѝS64e]<'/FÎG{o^y1$QP:L,OQ}1ŢC>\y[ bz\P" TA{y h#mE|ݠHPRJDORU T"2Ri1,f =a $(80 H$xzPUsS/$<-8DP(RJ ۄLx\a* üAiCl0DA*J%mo&tHyjG&5EZ-&LFvŖV yX?HuY!($AP ;Qb@E(J%(xj-aZM$,5+$.%Y(臝&u܅G/0P0x5$ (<ԔRё5nb y& GnW{|0_.ΫfࠝfAZR-"BT* 4:= vA6 OcI%5(jipJJEMѩ No sG@4qOOM:ɬúwo&2^~C`ww("kRw\,Ptz=!iZE[쮳>G.~8#:~DE*KMB!jt-Eӷh;:'fz͙><8!qD _7<1`Tz-ޠӏԝwQ9a6[ &y8\;''j=Q(D=5 =UƨL,3I,*wѰwxΧ(r(>:|6( XsA'ppp;w-Ҧ F Ƃ(})O(‰kPx0r z4<aLwR4=0 $2a<}]WutD@HR$%"QF{1alPuK.WYڱ , K yJt8BY;"FǗM'j~ eb2:=Fry1WY6GbCr]OhD!go ",]chirn'[82sЃ8:i}7cRF) @iX"3wP܀9C8|Ge^Ԏ]G1@#s ?"z`8x/#ρqhh'ٽÖto^+jIdkU,IodO9PƊj<w{sAc;uۊ۞QdtBRv%g4 "HP?1Hb) ξk:ޡ͛c )9p ~u@mYFd4eq,.{쀾}tGg$#ccRT&zj?|cjKbxMF yC]<κ=[`׿>#o$ ar #֪oOVCq#=+R!tLA翵lh~5/0qcD?JӒ\h:^zJ"039ic : .Q5Fo &VP2 b %pSaY^68{yK>ֻD!䆤]>r,RC$v'4r5-<'M8%}|#?^çĨ1ڧJ_-ٕڈY$4h2''VMAaTO|Nֻ޾^ih8l6JAѝ_4Cäb23N.[ &P(>Yu:.(DNQj!uY9u|wB;FFJ.DžLB4h44Z-3c(ptL;E7A?9i^t/t9 )%4[A~6 Z==n256r  I@ԀH,BGݐ=[R٨R~⏮?z b֐=N>}t.rhK]\eiRy$0tGZK(œ_v¶ zyĨ$SE*\4zJ; (@z:huvA;-#Y $5<::zC:S+-`|O|i EIXGd6I[ !t4Aag<$֜)2_B^KE<I σMRh ZxViO DOv}׻V@DDA>CDLQ(EEJ"OvioIENDB`Dd^f'\ T  0Vh XAbb~8Pmysnb~8PmysPNG  IHDR^^gAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_YIDATx] d2/ H>%|ם`[U 3ga`,_ρ)/gA<m鹈Ssg?x[PE_ R:Mds& arom%f:bF3ȂEyi|~~HOC=cJ_ ޗ\^ E8"i}Vz9PdZ_ێIoo ܫ+t{KO.>o 5H3xՎ}r>}}ܗ/aPK]b_ӿƁxpk`4E^ r[:gf$~g'R/O=?۽|e>_ϫB`/Z kNSBQHR|pѨA6"B5Ï]Noz;bZ|_mv4yV]iUZ[; Tyj!:al8s>HL.rGo87T$e8vM Yw4Pphn"/ŧJUYMm`88\o(Uz6972&j&3D8bWB*(E@O򭏊V*/Y8]x:oڽ2A땖@6]zZ iNh^f|]k=E3";/ 0fm뱗Tk8k6GcyCZ5"@B 䛂H`*MdIN&Nf+֑ρst Yu/1ѧܱ [t\sԈO`F"Xhj@mY R/N$&pT  b Sf]LE+l?K,C]~n}=G3I[EAKEBqϱdp$L' IIi$3q](.͕[ *'L&ki'iP0I؋K:'x;+kZWHw"ub:@W6 ,Δu廿Ŕ)sJGWt(i  `A> ${-J-?鞀 F@5$E":ZG C#uNh1-3J(zbw\#ȯI|u0.[c,R!<(ڦ+F:LwHBbI8^Bk;bՈACWagAsbw9N\ƌMCɒ@j!<}M<}SM`L7| ]y|߭ bMo B_Q+6m+='m#%+D]eAW+乽4ˮd09!9lߎaW` ǻ,kj'x K:n 2:ýTէ<χlӰ걐Θ 歴|EA*{`{m*eT;=lRK0/mR*뭠E9@ߏ6)rPn)!Gx/20]\yg+~{@7KvuT,HfUU($!U-{0Ҹ&C2 & G3j"Av7| N.6'Yz+I5jns+lr/gjwΖL_+ ;ps9 wv3-*ROߣD06Od뀤D%˄p{ KLIg"N ` .%pg7Q׏Q酛[{eK`ka,ܳ @{Wu49C2~I{ 9MF<"@S-4&/[&)jx.pX<ӶPmހX^1H5,a۴ШWug8Typ8SW9fs˪"ѳ' kr Pu/  ^%WQVfW I;)oΓ4q_Bˇ^"ĔkAfa?Y"]x!+N٭Qj !h23@kCv/oA53w.ah פR.bH ~c=ʳUWY2 /㪶1yHR;JTb$ NR\y3boLw_n*=ӑ#0,B;Bem U ^ hׇYquOno\^晲N8lh_YU._B1뼯^;ahy!Zf>kcU~! n%Nؚ&Ǡ+Cޢp e펗1VDbc:argTU߃ֹ[;jMʉL1OGm%5fr˝#/q"Ϛtjnˑ)Df~z5Ȋ{{j\Oz}Xd^\fiA)E|W a{h_ʧOXgrD(?o% x~^c{t@L{Hʴ%E3rȿkxPׯD4^lMrVHM3Cj?x}d8Io~g_\m{C<./y Cx)x*  ZjH6B q5 --6$`TJ͕F@o7jh|!,^ 8GZk2fVGriŠ!y}t=9^G{*afK'Ld9S|j]?_\&tHњT"Ehӹ[5b#,xE>N×ƖoV]AQzXynQrz^^MwS \Y! ꏫO'tC$yeZepniHW^3O'wh3_i>F% `SG[jK7){aYsS 6G?Q&MYzun3W=J%ws.6n#d+'4I[5G?zb>4&v-WPQkr.``x Bӛ\tkT -fCnYQ( Ix~ V#~96}Z1/!mB Pʙ/>CmSj0*9˜y"p31A_ӪfmKt(p׋8u'eXǗϲ/ }xc(r{9Z.+B¦Brk%C񗅿.&7 ?#NA`tky207 0767˳A|\);"SvJВw_ ardeƾ[f-@ &hy"Kuܫ:M]Y`_hՕp;FMF m8/x%V6rGkA*dCu^:;|#c*j%3YD'F_IF[5|9'Fk5ҖRצ\nd@jM`]izPO>h zU2i!۪75Cj0R[ W1q j+^jH?Q?9NV#<1`+!p+m^h>b,!I• J<ݡ ^/b47S%{@hK &A09TMF'0EpiJT7w% Hg~/G P "iUҵCM&Y*r.u {k $:IFh cJ"NfJaBɢ _뉱IR0ۥ>*ݬF+4U*_NQ*{U>_Po'ǩ8-U}LURgrX>yfd}.ͺN$&ȺXTLlxFIz1>>Wәc @67r鹹FɣwB6=Ȓl'jd@gakAiAB?NAxѫ3ۙ2C?Ls9 3S rM+k8P"c$:• e*B*G >jW`DLmT㻚8QGU1'5z3Ɛ_lI8zꨱO#Hg_F48}kWã9k1-;{=X'(ktYd!9NGt:y Ը 2al- 7 GxmE=]<+Wӟ 9r)A.Sx 0D3*&p߉SS9N7CtCvj yT=!¹hr_ E(Tһ+J4q4"+])vz|)} ?+.gu_4Ϲ"szZNmuo]H_c\ܗ3]S_)r=q@}ڨzwc1855렂A6W }aQ_"ĸ{"[K3w%T%N}CZK_ި`VA ٨E65Z|5FwQ>h9ʙSy%{˜DW!a(A."n'"!])v*Wb].|[z;'>Kvw~_,p>/W?̼~I }4g~.`.uN#Wܿ8L;rB pRKfg93q5r2aㄳOs賜?HOq 9ݜ'<ў[ 7&2:363o3z;oD5 NOws4vۉc:NNrz{O|?Ig21#y=J6x5v:t:;|ƗbcV~FRo[@> c99F׎Z|w59$rXcߚN+Ze |~Fmğ1l=2[8%## I>%MLK)PnS\KWgqv`);و;rd#(R#HXFIFg~^T!1:J }\:uz0ƒOE6ZVrF1#>Ú5X{'dɌOuLSyBqMmCron3tr:J?YІlf_ϸ&3[-t[MsK_b'l0o&z`= Z'?rº)чaZw9촰v,tU@%jmΉfNw810bzȩэN>DJ1|m:M;T@Db=^s2݃=<愐lC, FL?c/;QWj9ǐl//0Q00!-rGG'ؿ8_?3!? 8NܷY˷M漅8 Ƈ\5Eu~')?y:V?ψSg?NԈ:FX#Q_9UF :#S:s'bYD3ǰ.xyZ| ۨ^Ph-qtq4KGkVks3E\b$+`K"bg"p'lz5ZPAJ+>cDn-æ [1N w\V>L wlcǜ;%ڈoX3s_؂ Nb:Z6s}37cwB6 'La?:!gDrN?:PV%Պm+LlgP8a]|~c!MOfc3S Իa 3B9F c5UB'#32.9&3אjX*?k`y+>2t˰_ℐ 7J{cd>'ak儱 n|7~pjq|tjtS۝2d#<]|nw%ND%~̜'9%z/! Gy1_C={Yr"U%#CDd&(<  C AbhLYؠ nhLYؠ PNG  IHDRAKgAMAPLTE~~~}}}|||{{{zzzyyyxxxwwwvvvuuutttsssrrrqqqpppooonnnmmmlllkkkjjjiiihhhgggfffeeedddcccbbbaaa```___^^^]]]\\\[[[ZZZYYYXXXWWWVVVUUUTTTSSSRRRQQQPPPOOONNNMMMLLLKKKJJJIIIHHHGGGFFFEEEDDDCCCBBBAAA@@@???>>>===<<<;;;:::999888777666555444333222111000///...---,,,+++***)))((('''&&&%%%$$$###"""!!!   pHYs  d_ IDATxK `t39{*7`6FR0k[qDŽ =  Įi`pIͅ!E\BҦpC0~* /{.ojBP]&EP5Xzc]AXm%2~,, xɠs+ 3g2m}=c<T1<乩B"@ , XH5CM{%: J!G ])HuU-@6/M&)BYPKID99AR oMUD" Š~yh6";)։~/K9,NKGRK@htXDGFIENDB`DdB  S A? 2UpUb !`!UpUb  (`\xS=KArAHR{`QlQI'X FMicrosoft Equation 3.0 DS Equation Equation.39q?}DyK _Ref470403198Dd< 9 C A 2?2+B' jV``!2+B' jVmLj:xYmlEygv]+D*-ҋm! VGkB4$hz4KwVc+T"%DDDGȇ%!Dhl !J3_}t}ov}ݹbT9UPCsգ~[6Fڎ\/?f_`?aivف;S0e&PL>_OyNMd[XZX%p;Qnԉn5cǺ+* |pпJ\ U\ebx֟.ΐ cI0gI VSL=v YOLL (1+r) tt=0T 1 "9Pf"~nQN YȊ'hڊYn%ɌҲ=}ZE1YrL3j0s#3Dmǿ˜xX/q܈x5 K?}ɞt*3DAZq]#x?WS=Z|wZd5dgPwȇmt5${'lyB50`ERD-ղ3h\\gms?~-ć"JZ_O6g&fW0ư}(G߷ FF:.)&pq=V\""*)-CɜȖaM%+Z: ZSPOG k`#W[k;1[ys+zAht"& +0E1+E&;=^ *@B"AZ@E4}W2IJkW4 \qAhqD1\@[I H+I)y/Cxȵ|O3u5 ?+OmJ78.j /z wR6իY8١cD*o=VZ6Jr!l_ǵ1,9'nx_~K[7'GcN٤Y*EV{˻q. ~>wuij8v9. $f@# vUC'ڱyS9}DyK _Ref450279940}DyK _Ref450368150_Dd$Q <  C A"!q*zX1hu$a @=!q*zX1hu$ay[>qx] pV>?P-cT@icx@"U"AKRD P0ja0T CLVQ 6>Ukj uZzs{ror,{v\bpn:bx$GN6@)}\6 .x@0G s0d`D GJ-IwgdxRzpʿ ZO̸-t!Wb7i|9t3Qِئ1͸ O.0b؀ Y`LiB;2i-%,+|}1P;k°C/NG>3ߨxڞ%]h2N_73 > > ]iSځM\e:\?z2*2e۠"Sel ^a W 51xk ^g: o0x -ۦc6ڂ%70cϏ#W;o亜 0xK > > Z֓.#E/2x ^a W 51xk ^g: o0x dpt=fnj'`\ n;C|NH~4'}"'2~E Av睊!\}n0a*s t=0]*.‹`_)˔`tbCx$XX\31T(.OV\W*+«&[a}1 qe~)+-| ^ f1Ɇ# _r2g[WDXp^h'.7bh#,lK.@>'yͶdsƓ%QL}ll9&?Nq3I1<6e+6VŸG/z,eSNFnUF/粤2";Sa:!|?[VuLGXznTAljT!S<;!kvj7aW'Sy!^pmQTY ~Pq^lJ^lU/+MuQ~@L KlSS K0T)[ίŖa1r;Pބ*>O:mO|Ƌʟ_ CЧsNٞ~?ѷ|OcD~lԇ0eLe3cHVX9Ч\Q\oS氶J/bx ze+6U ߁-vsd*\sП|Nm>߯LUuN?m CMeKЄ!lEd{| џ }N';/D/D.;F eF0-6+Mu5>Ce+|R.KaS*-B/gM.8 _Cѧs}>_|.t<1mG۬|/k#|- :DZh}Xcm3D)ok` [&Ka; ߦllW V#|'ݪ,, o"Ҡl6UƄ.~Les3^VuO ?OT|%7碟7,jka&t=#sz6hZ#>P k:֍Þicm#VmE6M2ڊ# 6h+imVmY\"ڮcm h[n4ڪ"&Vm[BcNmcmwןptkv/1`=~XЖ7n7_m= n(ڶ'4k{hgYF۶hvHAk>d7}\6^y_Ԗ7f c~h1cpc=Z[ύC%k&{~nuwsF0/S<^ cJx7ՙ}(a(1e\?GIGSSy@Jٿ;Q[/޼RSJs.%Y2L;*q;kQ5o/v{RJs%bNJ\o+^\[4SyK:/.SDI, Sz'K;kQ6CY LY 17yz?/ b<”;`#|k"A=w Ɣ58Ɣxo$]cПb<26 urDHḀx߈)qS~')W`<|k4Q9럢oŔ{/[lji_)W o'JgJ6Ly1~(* ǔ^Ϸf%\ݘݘˋ֕ǯj5~5`;8J5`>/[{u3nW!c{^<·>U!w5kĔ,S>15(~j|S,|žu(͟g&LV _zqo-xۏQZk>R8Qc$JIGc#Y:E9uN2:# 9,isY1Y\"b:c ʈ$, 3{a#Wc}1I{dh=2#?B:idL餽3g;sX&sct>:5:k#s |1Ogκ|u>otnsY1Xswtco Ith<}:zP:bG\,ib&y

js ~qbUxwpuk!2A;87yO Hw}L0> 70,7Ŕͅ(|#$9s |]SgiC g瘻XKkf8`ΞKǜ8W27;2wMҼ-x2oIyʼ3xJwX ޹̻(yZ.eޕ{ 'og5&۲3Il? ܳ'\.4պ}w#h&l'ў Yhkg’_ }wT"w1݀|w9)y9PZǝ0}N;s,킰);.,3d@=m4?c> SƲr(Ak1[8킞uoH;]ŸE9Sy>pGk}"p/Fhޝ>?1 |܈%7G{m.JCܚZa*K77 Muvd?}&#eRy”94 S{ֽD,W#=P{!$oKe-\0 Tze Pv\w֑.jG/_*iGowP;紎E5po*Un/l h/KQR(r"ͧ|:T^miOcrI)r~+k3!ӥ=~#^vV[є.}prNC ].+@k NcR…Opz pz>[K_'ʀmZS~W*|)) .~*)o?M/P8aR>Qi|y '_~|)<;>~Opꃦ/|3 +|[fpOo/S~_/O*OH>*\4=kx=QM?&O/;&D}'jvn"M64Q+̕2O ~/k]G=96b\_?\?NWmȹV0Ir?.O洞\& >igqo4_j_uL~/ |<ke@kw?Va4%z癃̲ hLy/6Q?hЅ3*4NIbнZC).bRFT_8oׯ-i&ZVֹ&@$8'u)}_"N!DM)M*I#ÿV=p'Ã[s>p{]ܞ߰kwZ3E{v_'ձ;2H0G nl۞Lך&=,Z=m zDdrH  c $U A"n^U$z2r8@=n^U$z2r8zo!25)x] Uŕ>YDM[ub3ƘL&7ܢNel_}ihYM@Aeh(UW}y{wH/sN[uNݺNȯA:”1HvL<]T6?")"-%r!59ւR ӐZ!-0ie)9]$ϵ_A:1~hʍaxŚ)e tpauQw6QǏe0ǭHF: (Q"T|\VF"m (WZTWiyaSS:([ۚMYA;oO']9T7TjIjSxH?߂4+R~`Hqog!HdA'RS"oSP7A&R")Y sL((ϱueX2;%7l4|Χ|C!6/l6Q,<3;J2H}-._Cz-SC)B H[=~4@Oygfv_r@_A)i뻁3_c$3Nꔿ^BG?YE~[t4xxT+K6\?l5fKhJ%%|N]W;uUMWV8?ۦcl^H., B(k8 ?v"}5]EYpC@tq67x#Tt}URM5بЏ5UE_ U6} k*(O@ʦ?6}W@OR9Wrz7I6Dǽ3ئůi6EpMטqlгAGpMW |LIv P][\ve}} 1ok m#D7\&"o<'[Mp2A g(0': ʆӾ}Ej'B;;vNLm,CzO([K{O2B-\8ЌG;g 1z~'l2&=e,:֊sK*GTjW)ț~2*]~;MbOr:lcخi3+_k:M prco1ֹHr -B<Ч3Fz9A}+Yr~U?Xn3:nBz+I1k$svۍvB&xICk6?ErcI,5rЀD:Ḿ<W;987c17z>:dyhl.1>L2v(eДRsԝ1J\hl&$|8wʵc1CS|;jyMcAy|ȠiiizG|QI6QeD9np-1C2qpiKjD+v4 ob0~/Ù8ӂd1iy\c}c6Qn8UZgd\p5ȭFB A!c$۸^qdrp+Q_-4᱗7",lr#EhVm/h;A=O9vs/ZKZ^p!}=)'Ocu7I̓|ͧihaOptʏu:UyJͅɅ`b|ucp,6oKg f0.8xU< rK]`OU;GBc|klXH?X^%/o#y:pPjhVD7k%㗷ێ-H)(']9fzr'l;@.5_C<$\ԏ}d*BiZ"' }L!{|/>YW< ͳ|Xg@srE/,4ilՓ^qsd֟eOàvRڎg0.V9N.?8*me%Wr-2R3BɅCoGO2>a'HOOg ğv5{Cc$oʘ 9=!h' \bc`s݁zb Kz?+ߑu{9rxЌF{(a!ܥNa=sx[F ^=SuSqbIN|r'qR37me<%Bb*hfwiDg}Ƙ}Z}ZȋQbkDj^& rGZXE9vs_1кVr~_|q/k+h7߱n{)8 JI!@.B41rs/hzÏt#醹 =\ZiWgf6vIzoy 7ufH9i;8q]4ХNn[x-.p/ '\br\J홓4xa\=0W_OGur>P<?;"|՛Tux cp3v'3e$p/ur\Lk<+]S;=Y~p̌Te:%G[ssaR $?<:pPjh^?I{Ƭsہ ('nZ{jk>D}A[^qr{M9:ȯȧG.BrO{7 +bawh_w |Su|p KK5#f6>d$W=ӒY}?4O}}}^K,b bK.Kdnf˓^{M!^|/@C9_x3lrE qbk*SRX/½kg;c q89ApF\bq˱B?=l%=^_VH?C5H/;9w Q<Ùn Փ/[0V; zY'Ξyʞ㘭*5r#ceoJ h /;{kRhJq_?|Y8 ۛ6[@cxIQp#3 q2T1F8/.ur\gd`R%=^F>X/#݂Hk/\ U+7"Ƹ'WJ2w= bxImsUK-uopr{#܋ؤu/-f{)0~3uo{=vozw~.ԷmIBrohG}{@\Yƃ}CM=C<)QS#rEA )t 1s⛍#Y=IM }wh@;zY QGK,bP}̪=ޖޛ3j~?~=H/\ U_NoLà/ĩ漢-OT<^1E ]ދмPW1RR8j-1NjٌŏqbYMB9wIWpʑK,bP]ҕj͖^R/l+UPdħȭtier`i{-S / Wc߷X E:mbxA(NNݼ^|W"ءvߛȭC"۝Dvܩr +(9Y:O2MuջpE;~3|KCs7|]%1[Q;m?l'}s1^qO11hC; iC{J??2K,bt^.CZ04y/mS}Rیyː^sr\tv pvwϝV8A/ܐHm#4xlغνmf' >1tO#XĽ\B<l1[BcxI';jغd+Fm@sr\(~\༈u#A9_^٘2KzLF%ۑ"iy 3 NV Eٚ2KY'z3|^tI< wH{79v@Io;zN5h6D ۲ɅoµTȾN6GKIo,f*&*M*M** * *f*F*&U6#yy=}^-xzÕRz#HG+=FJS%+=AJORe'+=EJ_Szү+ӕ9?zd[#Xuf p]49VAj+ZǪ,uϻr7os#u.:`Yw笃sRs^ a g?VokWDž Q]:~ ޟҿta긨:~uܔ]9uW%@~y'x6L{woS>T?5KiJΉ*SZtJ*]t%Jk.ULr+ԿJJ(}EZ딮o?f_]s! 9gq܋ W܉9}uZf*7-6Uޮ9m7~D~Sϔ~ &J*-RZJ[(m0+mG*=JikG+=FJS%+=6ٮy>gj_ Lg)=[7~+b߿JUVyJ|(Pi;)X%JMw"W)˔^ߕ^@hh^1qp\eGU5׊sd_z7*IJ+EJoSz;FJRzQz*WiN}JWvRYCJV2|($z{)IO)51q}g>=wGC?ΖQ֘G&]e~y~hh\q~3E ǕW`1kzЙ)lv8t-x̿UKtNKym ׋_ ?Mu=9GE/{NwmܝĭȿC: ݦ.qc>K|al#|,(fz5 H}"O??Ҷj[ڶʛo(bCKŲșL*#_SH<}DyK _Ref450112363iDdH  c $5  A"]%\8@=]%\jޯ8")ox] p^q+2&<@q0(!8Ig„$06>&BkH iM l%۲dIeٲlYo&ml0!ݳuW[ ׳g={={Ͻ:D"M#_Dv]peE|DFI"IB{ۀ%Χ'J+;Ý3V,Ru8^)'QQ O-7D:5 eZWN/ȓsggP/EgTnҼxKB/܉% (- 1mWɕRr_Yu/:HmMyN( o3^y jMv}Չ9ԟ&%W?pG~#?HԿ/Q?їM^?'_=s|΅92D?KB~h9l^7l.i]=RY^g}}?~g~e2x6&wf:4'xG?k=Oz㳭;Is7{Mc([} #00! u +.&emr, un|G/oE^TWi?i4#w]f 9J`(m4 ڳKZ[$i[% ;뀾6pZl? IBN g(薹1ݻs%ġyZ9`/t/`7j/|u`oB+N:VZ=`Pz,<c~?EzϰhR-QLa)Q4i7Ojb:Gk㺳Dtt| 08<>_ZwQT z ֭/i|K>פ?$aqlJ!l}I > uZFC >Y1F^7-74lֆjmu>9HΉ4j/6tvN{CN@tv3ߧO2Q^y8<>:ߕO]אnQ/'tv1c7"Zz'"51SޙQe2 zON:U{/¾yDA!Q}LAJȵ~>5Xq18׺5؜IuH't% ڛO?s"Mz}`o8끓Q=vt`+tv{59p'ݯN OJ!ݿ|W"a9| {DsRh=c:Otިt7tv: Ѝr)`˾|0藶F/85/<:>2luF [b 5z= Kur_|r+(tryؽKy)~`CpvIaA >|u`oeA%o|&7|1; XuIa('Ds V^| 1#41/l{NA?"ZyͽP2/lzQ f9 zόVtZ, I>#Wo)X>?h9C 9z<):9OI.Au&|9R+栄`zwʙ'Xhv<⾝gkis*J黾P1~T?ܞC#ԃC ^ljT2'X JM^/5ڞNxueQR7i1y_{SDzW(OӽRJa XYXƭy\?ޤ.`npHkb蘴gm. (uWFk@ƳY3-1'zwkUh-5x6kmLaHTY:ke4 rRlJ%Gk[@7Lp'Kɬ}<{磰ɨQqURV῍0J('#b4c"woOt h5 Ti(tZLȱ,mOhK}ݾ_Y'3zRcXpVy&g3n% }o.@hy} {xtiyKxܨGGAo3zc:m'$P30 pf f=bMoҏVeCZpZJ[llmtv[H!gl<+p_No;}l<:w[ϪYa<7b{.}J t{i6~s'?xŤ%$'~&o߯|@ y(!\N=IRYwr=g֦IR^`֔j?M 9j504pċj'g )(5yS~:ə6LE)eQT7iʙ졬=T]B?ؽݧT?vwFxb[噜ftre,'g0 Exg,_f)>$i&yR_~OU۾-(lbPX,[bBWgKo{B[j1yy7NmW-֢iM:`f۴{T36C_8Ha71GT{g'8="Ha7{`w=SywT^}X[d(;uWE{iyϽ&>%6Rx{WYR?R:l{:^nGG}:~YgU)u YgݭtYkw)u]JgoJs͒U^ߪ<;x, 7sرJm?I2WޏL0&˟ȟ?؏|oKǿH7^1wɿ 3 c|?.ȗ,U)'@%/療<7^1i?eܨH_˗T$H7^1?A3Eȿ$:%ǐgH؏sxI\]%GL^nC"?1e" ^ >noC1ϙrHЕtm~k~tϗO^c5>Q]ia'm{vnZ{^ՑF?ӧ'}=3+'Ǽ-'m}7 >x+y~é7S ~Um*se{Lcwy~}W1%~cX2=-/ȗKrPRr! vvz)2K8ˎҷ}a2|.<,gbg>~^Ǿ!ùų+yU1y66ovw~1̝O>oi{^6b0j]?P/)g_i~nu{_k_bk gpL7xmwɓޯk./{\-ܩ7NZrs{,y!<Qz 2;96 c3[* ?h?po騄`Nಸ(c%xOD*tt8UN@!Mm>}%O]Be] SsIG*L}1>,?xN鯁ĚaEs$A6]}MI:+mk@_L'$ʳt$aLE_{}DyK _Ref450144800}DyK _Ref450354590}DyK _Ref450144800}DyK _Ref450144800}DyK _Ref450216288}DyK _Ref4502171491Dd<  C A" \]RtF>3} KR@=u \]RtF>3:X>1C x[ pU9IѺTjV " *J(k "A6,*"L[Z2u ̤;侼(j/q}gKu2Et;`c͉(]|"EZD j-^dMz@( c5-DӐ(v8ytl_8ۉE%aΎkx< qզÞK9y;)h 3F1"Д9jQewm57k>|9*x=~þ۽kv-Gtu2/쥞Գ#={g/=߳7O ?n}­뚸7KMl:D;^ݾ3U=S%={g*vvybIǹ[Q7ljOe_d}9N֯~yӷo=2Ͼ̳zR>ҳ셞г{|ޜ*[o ~F{qڣƭk=jܺ1nk ^&c(q2bAğWlZRRּfrE8vy5Ǣ֤,j#])_ f@Jk Xt)xEwJ7D]Z9`hz*Z38 m48C1V;&YLeO7 g r mzrv 'ho݌^ jw5/ڝ~D.V{50J/&juЦEa7Zmy/~P=jBi }DTTp=b'@әQ63.Ju.w:Q#ޣޣnU[pS"hn@(6-Ry܍4LI?R1Hfch"z޶` >@QP=G  .>p{QfC~_6M=L{` n满h 'K|va n 6;jz?H|ᶣ؁P; mw02{Zom(3!-~{L|`o#sk} xhý2c3CXц{EXi0I|6x7Cm |hý2cBt`#P&>p eHkp밪{vjц[2c-kCzѽ*>pQfA~M(76+U^AVJY%`B~U>k.ц[Ѱ v{ 2ʌ/`O_|^?ݏCV㿉6Rː_jAOц{eR䗆O}?: @~B|XPo8&>pc ,<šX(h-BQ|y*軼.Va]9 =D=ߗU Pf,D>/i|Gn>ʌ/gB3 7悛Ggjy} ,ʌ A3% 7lps?j/WB|A1١Jhf"J|fяLpkT0\'>pe(3f"?3Hm(3ʐ/ 7`Nm&5>VL|B1yQ|aR n3OZ~$*v?yzeF)dgh"*>f=V% vf  7eT䧆B{6dS_e_sXMj"I>V;Pk`ц2c"CPՇ^y=8p?G!E; #?>Ԏ# 7bXz>V;Z{ƈ6(3/N#^+>#N==Ny}Tl7 :>;u#a y5C_p0X4?ή?v9S]ʼn?١£"WKjQ~oRtdW^a۴ I & 쩹@fJs;l0&A؃ܿ x1xD|kKզ-%Y ?8ju~aɨ^X[*7 .F`ה6ʠ~m;}5y3'T{+ާڽcFߎ=Ɏ%[(xO"%[k.%3]6] .Q .gm͙\}6a߉[?Qy_(tn׷9U^Dǧ.T&=vΎU蹗>3KtɞxxvB+ڸ&=}|/@}0 (j6oﱳf}5֩eyc ;[M=!0 Cf@fKTծTbRⵘ6w稠VΪ$2`'7CʳE"L:)?k~lVU{p+|ܶS0n{ ~oӈq˶shXB"o3m[of׺hoڼpXڔX? A: X~K\=*(ꨣ e-VKeFŵreLG[O m=zh851U=c"D:?@}R= ~EE3׬4Nrmq%#ԗl牓QRo9WuzT.W&t} aSd'gQ$J>y:{G~5*'x~LV^ט&RIO=CW8 \ktR37b,KIL'm^}J=|RI!wbɋNڼƧ*ObSg1"l(c|R!6uKi} _o@$6nCiJ~>Xo ;'o Zc}ocTN%7C?BoE0/}ԕ'k'Nn=z<)0,¸N4ٮb2BWDŽDIֶx k+^ڋ>MLc72?¶:^OtSϐgc #=q AMr1\gq vLlbg{Ķ؋nK^zK}3i7~'{X򢥄}g cƣ c oWI;<_؟߰x.Scc>={u<ϫtq;7c?cc ccc ƾ c?>G0+M|G{u#Fq.c (GuXYAq*d:7`Z>בu4G^y#uq^~u=-9KRG#ԑq'LI59&Gّo.C;Bw!^ck$ܟW]|vԊ$dY,6@<>|㗢}*^QqKLťRǥ߮oK,Xz~ĶRێs-Hs{;o2?;HcM8gDXyӁ͋~w(6wX 0ؼ@z*DHPߏ_-l^3\O5' 0ؼ7y*fDO 8\XiyJ LHk۔V8DŔO8~߅eKŔŘV)`,)SEAf,c̗0OXL)/J\m)R^0<lT_?Бz ߡ&Kz ' ,֔m߆-mJ=T/Í' ,֔}—q *3 DŚOj=ѯ7͘' ,֔}—,d;7Ñp[2û ?QԞ,l"^:̗0_<|ofy V+b~ 0_|62z|#曘oε3Zr ZH$;o\H+a)Ŀ%/{-nH{ε d 2(V@ );Jm/ZOg _:7f&a6?0|/0?`o3;y'?f"ay5o":;`2AXg ߿lscdt2j+<}Cx_[P "@_acHGy1Dr7<Z|c;XOi~dS7Z2Os?b>%N]${{zn;cǃ2bMu?X)ƺ\v0{<%3-bh;?dczc#-\Ӽ]{'g{&o+o{kfeěx{cg3<6ڼ!s~6D 6τsznfy V+r0^| 1oc~+ۘg<`72`ɩw2w37 !,]t>(! r$h`mQVv3{ F\Q{ƞz^zdW1 ;3 sQo_B85?7H?ΥCC79md=ӝ}y]ZZٺcox_R7*{w_BT=WunUW:χ<5恐/b$}~0wвx>PLƐkwEw|uȃ!*|67ZfV,'O1!3uf7-#0# w hOږ{hue_^L$>GÙ|>'+>ӏюf;:^b6奌\Ks,)^Xn vA|>cִ43vrW[E| gooӉjCJmq:o)ve!=-{WF,#G|U (үe >'&>F5o!⇈#~qxM1 q? F_4\m !5\mE$\lO#' d+_DjZgC~p˵2\m2!lۉ A|;wj+8fʻBpwj+!CpG W[y?~o#3 d+7v~lkk˜ni3~^^K^O)x}/bx} ^Ex}$׷Ok nw;7{3~x}G^ߖo$.}Sۉo'.z>P.]KKĻnjxqѳԶ?j[}k>3HZ~9v~P^߭ x@շԶT{#7ێV^Z/z > 7&V}^}^߶j[}_E=׷}>S ^]w'VrY &mO{!{flE^d\.x}2\m ^ =oVE6\| ^ߧ =IC>w .z>s$V߶.jDK俛x7qYx}5\|^g 'O\|^ߧ }m6fK{ ɾI۟d=]\g%ψMC:7||m畽>[>DMoMc}{N|+3#+xC mx&C2WR1\d纚+Crةn8hMyvy~|scS?*:+2'Fƿ#kwJa7>x!{9n>wZE148bcWj|Z]1?82kb狐oGƼ29!`|>Jy0)>EϦ\ }N>L9-Ϲ:$!Duʘ^K^Z[7c(5vI1+<}$^/Ǭ2)gNP쬠XV޻&6N{wZK}$.U]_ذ"ڕlketLד%73mIGزSϥtc1=[BRS TM9)kdEϔXET:Ȉjx?ǩڼ({oϡ<;/5H,>D̋)Nbۯ6OObQ鿏I8Ol>$Gb;gT)w{"^V&*+nPLR~](oWxC:_TZ9묥YTsXW>} aa$q[js3%-GP)goa^E{I3{(=3 ̫O~R1&~Z0fS^cX}2:ڧjQ|0x7X?WTfbXTqɱWK'{^g&׋Ui}㺟I' >i O|2 >` o6x1k)ߙf ~o7x iNw6xe ~3[ ?f >hA2.?i' 1G 70!2a610 0I9z;U;='(ݟ\?s%́<|]gCx~}wCϩ/q3 gg[>3o4Gx{>@g3N}$pwgUξ"p?$5q!x@3 {>HrZsgo;{V3ߜS_)p? xɜ`|ǝ8_8ɜ`|_cjWY뽽ҵ.WIC~h}@Zh}owZ6h};-Wٗ}~h}CZ}~Z@['RǠ} ZG}ZG}Z68yZeؗ"_ah}wZEh}!h}Ah}˾7S;Or+iLw+[]wZ.R_%c/-_˾~h}>h}GZ{-e}Ғ?`_{/B{ZK}˾Է?`_{jjjnַٗ^unw%oƏ}Ah}B[޿/-ٗc_uh}נOA%>lp$'߂ַR߯BUh}Kh >np~Zg}Zo@ h}F]DoqmlNtڳve3 *rm%̝ڣVN77=ܝ{skݩWd'ek!9Ci_CiMU)[S<Ӭ[< YWK֭ZCxQ.񪸄Ƌhr1{}sue e~3V;?T˴oy}hr9+=j˝4^2SF>5'/>rٵCL̘9m9q [mc^FsQIo'<_R' z1yϗHגcfg?Bһ1XmEIys y:g'ty%}Xz  )yݚ7M )]y[k3{9{CWz~/W7N5[8"Jl&߮zVB%-={H޹}e2FCye]oRWZ,JKMq"$seGϟss#ڝu8?8VC秫&~ ]"xe;m,sVEXXt l-H?MNqlsvhJSBEt!ޭXXl[yS,酌rX챸qY "b07z"cbqEZCXŹT^ug.syrH\oOav,2%q^2EZwZ911:$s(e͋ɗj"MFXd,[,.޼Xm>:_ʵ@)Klx.Bs8.'ߖ˝Yꦴ,so~Lzv4ی[3xʍ` F]͡v@1cӞeӻ+tf`:+Frx*?Drrtʿ^*]|cM=աwoD@\Gw>@*7{o9wι3 ml1ٸ V.EZ|QBEc{)_%2>KEާ mq\.oVa=ƊDK>|݀BrPlO8~¾}>PRɸ+f؅8/buY^ ^x_s~S$!s:7~㴟]P(|@ Tx[ިF*VU RxK^kK_qzu §i =+gsIG[xﲈe_V_PީN(E oTxk^**TE/yJ^ S:oP?YE[QVoU BO*I7*Q[O oVPATs NG~D~L] RIT)Rx>Vi+|X UYs9o-$8r.uȎ \s(ρ/s2揜kMї+ pPGI3g1ƾ-pv c7.ppKq2b뉓T1 t̤sM cw5O8nj71霓*f[1SI3ަnj9fcnc c{{{UpxAc1Cc*f|5njA_=>w=>Di]? >fp }{7 w[R8nWM[?Rr,<~\}X>[w+>oyK}c{'DZԷ8R6p-Oɱ7Wz.g}j.ןcoYK}W{շ ʱԷX[_K}coy9DZԷ~ \}7p4~\}wnp}\}WR\}Wap}\}w.p-߭z>(>6pɱԷ9k5ONN^ַ/RRK}c:p]9#RrX[8~\}?w;W#,> 0x±/Up*DZp}\}+_gycqp=>Ym.6Kr9Gy{5 j0m!f>{h[IrCNr}rU r*UJSe-\x9m$&C&kxW#xȩXWC@X , W'xȩ?>^9 xiX@킇o!gr}]+xk-\o/9M񚈷_Z`>~rZUj-\xm6kxmk<[ ,k'^!Z`>^9#xXC^CNr}^ roP3h-\oxC!kxCsyկ04`duf]wԽZrswZ|Q_བྷ}_s}S:埸h? XqwȌmt0jp8go1=qo/)'OۿïTG$87л>lLs-:a3iKIK>{T+Ak; 1,_;8FV77ߪfχOnlSWx-f?^K|OO,cl'%}OK1ryrڒ9{)+1rVzrSΓ1rl<9c\@9xr6ȹޓrn䬎ʓr~ݓ"FίyrP2OΒ978WsjmL9n^c?8}~ǵ)o%BZv/x-nqhm>크[{Dy*Lݖ5r!|ja-=YxM_ ֒xn% pu]]dtT};r'Lon\ϮƴIK㈵"_-gXo8Zd,^-soTuE\`Sk`-RխOio_zߡSx\?\bv4 Rg|0}9~$W!r3{g{zq;Gz{rkx8Ź·{\g?/9O;6FtD6Jc&!7OJo :|wf m\+<^["c.ڻ]&e b/!/#|)ȯ UeW*ɗ_C|%At-0Nj 6~ϙO NV28k9o^]+|n ?>N/v$En'ɿ@O^}ɿD~ɟ& !g?K~(sȟ=Wx-qljPoGI9p&p7-LĘGDZ>uѰ~KO(@يV|P|2g_rhciکqYs1WU*Ks2&x`g1;εS1}W&~Z3c1jrr?!xg&'x?f1g(·>y]^c9Y`[cL w:A`{ `{g`{w>^ ׂ5`{ |ϫjloߒQ|ZZZZ_*T/WsKaU\\*e^9*HO0EcO}<B(̓!Kv/JqXmxJfWtɼg]]O9- _7|y]MpL 9%>_}ܩfK[_yV)))%ɑfW}ѝݪSx"sigjj_7rTҎEwc<9$Mv* ;f:tDByYpL'B˭&w㚗|bkYErwBv}q*sNӪxޞ]vJ]U^fO.&[zuh> oa٦ ׮0۾gsUpܼٗ>RZLpf+"siWjq1Zg1:-Qo \tZZ Z]E|Nz Zd.->q/ZDCc"izk.'"kТn)O;yuZ>O*"si1~]ؠnc"i1q "si1~]ž ZiNZT+-K?b-EH1_4[jq|2X-^y_luir_Sx(:3BhV9!K%s U /^&BᗄW aa"aa#ƎNEbvCZi1~];~]N7_vqIH8p0#C#L' NI8p$(G Gf!&K8p<‰'N!J8}פm6r~*z^(c`p9׸ W3"`Ppʌ40'` Xh*L<̑y9>f&yHz;No3k5+77c$[^[ڻ|^jx뫅jh/௯UPf̙SU]4+uK֪Bt O2O)>tjSm}I ɿ>>ImT'_p}1hWS$MWqO:{~;drmmidUe}DyK _Ref450217149-"??_-;_-@_-4+/_-* #,##0.00_-;\-* #,##0.00_-;_-* "-"??_-;_-@_-   Oh+'0  0 < H T`hpxExternal costsxte Pliva d.d.sliv Normal.dotsTea Kovacevic21 Microsoft Word 8.0@ph @h|@ז@Ɵ|[hMicrosoft Office0Templatesz-<@՜.+,D՜.+,D hp   FER-ZVNEc5j External costs Title 6> _PID_GUIDAN{A3F53F62-FB06-11D2-872A-00609757A1E1}sz-<@xz|V$$&PP/ =!@ "@ # $ %=s0{=s0:0b ^f ^fw0 ^-b bf8b00b0b0  AMHP LaserJet III PostScript+g 3d,, `  -F Xd [4@4Normal $ hmH nH 8@8 Heading 1 $$@&5CJ88 Heading 2 $<@&6CJ<@< Heading 3$@&5CJOJQJ>@> Heading 4$@&5B*CJOJQJ>@> Heading 5$@&56CJOJQJ>@> Heading 6$@&6B*CJOJQJ8@8 Heading 7 $@&6CJ<A@<Default Paragraph Font>B@> Body Text & F mH 6"@6Caption $xx5CJ.P. Body Text 2$.Q@". Body Text 3CJ4C24Body Text Indent~~PUVWXefgxyz)*+CD       a f^_`opq}!Y%Z%[%v%w%x%*.M112233)333A3B3]3^3_3`3a3t3|333333333333333333333344444!4"464<4N4X4Y4e4f4y444444444444444444445 5 5"5&585B5C5W5X5k5u5v5555555555555555#67D7}7~77777<<2<9<Y<|<}<P=u>v>w>>>>@TAUAcAxAyAAAAAAAAAAAAA BBBB#B)B/B0B?BCBGBHBRBXB^BdBjBkBxB{BBBBBBBBBBBBBBBBBBBBBBBBQEGGGGeHJJJKKKK KMMMMPPWQSWqWrWvW{WWWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXX"X#X$X%X9X:X;XXOXTXYX_XfXgXkXpXuX{XXXXXXXXXXXXXXXXXXXXXY YYYYY&Y'Y(Y)Y*Y+Y/Y4Y9Y=Y@YAYSYXY]Y^Y_Y`YsYtYuYvYwYxY|YYYYYYYYYYYYYYYYYY,ZZ [ [[ [![\\\\\\\\\\\\\\] ]]]]]!]"]+]1]7]8]9]`9b:b;b}b~bbUf7k8k:k;kkooooqo5q6q:q;q=q>qq/t0t1tAtBtCtxo{I}J}K}W}X}Y}}}}}}}.~/~0~~~~~          gg g g g + L+@+@+@+@+@+@+@+@+@+@+L+L+L+@+@+@LLLLLL@L`L`L`L`L`@LLLL@@@@[%@[%@[%@[%@[%@[%@[%@[%[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@[%@L7L7L7L7@7@7@7@7@7@7@7@7@7@@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@w>@@J@J@J@J@J@J@J@JLJ @J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@JLJLJ@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@J@@;b@;b@;b;b@;b;b;b;bL;bL;b ;b ;b 1t 1t 1t 1t 1t 1t 1t 1t 1t 1t1t1t1t1t1t1t1t1t1t1td7X?KT\`cm>uRVDľ\&(6 F4^JQh`>yܘr$^e6}6ԧbjrcio{#&,38:CJKM~  !)777!888B999#:BERFFFN{[[[$\O\\]@]s]]]``8asJEPVDdPīh,ޭ:ll0npR D".">PDPh,:  l l!"0##3MMMnNNpORPP QDQQW"XX.|P DC^P__h`,aab:ccldul{|0}}ΧnĨpR Dı".dfgjlmpqstvwxy|}!"$%'()*+-./01245679;<=>?@ABDEFGHILN{|}57y889};EFO[<\\u]`}fKehknruz~Unknown Tea KovacevicHELEN MARTINEZuserS{& = ? 222<-</<@@@@AAGGGHHHMMMPPPPQQSTTW,W.W\\\-^U^]^0_X_`_`a aChkhthLiti}iBkYk[kdmmmnnn o#o%oEq\q^qqqr~t t t:t tt t tt tt t tttttt ttt t tt2$Jh/,2$ P5#"$PmZEYɄta"$H'.#3I x"$M#ܮt'\T "$P߼h*ڧ "$i)kt*"$kf+QL&("$ g7)G[{8q/"$|>|=̮Dʲ "$zj|N veQ "$ R2De"$E?_ "$ 䄑 qHaOՃ0 "$\]RtF>3} "$n6a^^g "$$X8fNIi"$ ? @ ef]^`eno|!}![%`%u%v%**..L1M111222223(333@3A3B3]3_3`3a3{333333333333333333333344444 4!4"4;4N4W4X4Y4e4y444444444444444444445 5 5 5%585A5B5C5W5k5t5u5v5555555555555555"6#6&677D7G7H7W7}77777<<<t>u>w>~>>>@@@@@@AAAPEQEGGGGGGHHHJJJJ KKKKMMMMMPPPPQQQTTTT-W.W/WY [[ [\\\V^\^]^^^Y___`_a_a a a a;b?b|b}bTfUfggggh h:hlhshthuhui|i}i6k7k8k9k;kZk[k\kmmmnnnooo$o%o&o6q7q8q9q:q;qq]q^q_qqrrr1t6t@tAtI}J}K}L}V}W}X}Y}}}}}}}-~.~/~~~~~~a&aa``a0aP```a````aa```a`v`za|a``aaa a, a. `0 a6 `j al ` a a a ` a `N `P aR `T aV `X aZ `\ a^ `` `b ad a a ` ava```&a&`*`*a*a*`+`+`23`43a83a@3`3`3`;` ;aBaB`C`C`TLaVL`8Ua:U`ZaZ`[a[`R]`T]a]a]`]`(^`v^a^`^`^`^`^`^`^`^`_aB_`N_`P_`R_`T_a|_`_`_`_`_a_`_`_`_`_a_`_`_`_`_a ``,``.``0``2`aZ``f``h``j```a`````````aa`*a`,a`.a`0aa:a`La`Na`Pa`Raa\a`na`pa`ra`aaa`a`a`a`ba(b`:b`b`pbab`b`b`b`bab`c`c`c`:c`>c`@c`Bc`xcac`c`c`c`cac`c`cacac`jdald`rdaXf`^fafafaf`f` ga$ga0g`xg`zg`Tp`Vp`Xp`u`uaua"u`u`uayaza za z`zazaJzaLz`Nz`ƂaȂaaaa``a\a^````aa`@`B`b`d`2`4axaz`|axaa`a,a.`0aJaVaX`Zaa```>`d`fabad`faҴa޴aaaضaa`a0a<a>`@aa`` `aaaaaa.a@aaa aaaaa ``a`aaa`a@aLaNaa` a*`,a0anap`raaa``a``aaa`aa(a*`,aa````aa```a`v`x`z``````````GTimes New Roman5Symbol3& ArialSTimesTimes New Roman"h(9B&B&[h5dExternal costs Pliva d.d. Tea Kovacevic3Oj&Q (Y <bjbjWW &P==~]NNN----<.SV .45555;<L<(PERERERERERERE$]WQYtvE<{;;<<vE?NN553Z???<TNR55PENNNN<PE??SD:Dg"PE5H3U|)-I>TFE       !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnoprstuvwxyz{|}~     )"'&#Root Entry  F *ޖU|(Data DrWordDocument1<<@H @8&PObjectPool8pHH!b|{Jb|qCompObj j0Table YEquation Native 1Table]XSummaryInformation( DocumentSummaryInformation8 W     !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTU.YXZ["V  0 < H T`hpxExternal costsxte Pliva d.d.sliv Normal.dotsTea Kovacevic21 Microsoft Word 8.0@ph @h|@ז@Ɵ|[h՜.+,D՜.+,D hp   FER-ZVNEc5j External costs Title 6> _PID_GUIDAN{A3F53F62-FB06-11D2-872A-00609757A1E1}  FMicrosoft Word Document MSWordDocWord.Document.89qΐ cI0gI VSL=v YOLL (1+r) tt=0T 1 " FMicrosoft Equation 3.0 DS Equation Equation.39qOh+'0_982428172FD|D|Ole CompObjfObjInfo       !"#$%&'()*+,-/0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUZWXY[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !0#$%&'()*+,-./V2456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~