Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 410131

Machine learning of the reactor core loading pattern critical parameters


Trontl, Krešimir; Pevec, Dubravko; Šmuc, Tomislav
Machine learning of the reactor core loading pattern critical parameters // Science and Technology of Nuclear Installations, 2008 (2008), 695153, 7 doi:10.1155/2008/695153 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 410131 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Machine learning of the reactor core loading pattern critical parameters

Autori
Trontl, Krešimir ; Pevec, Dubravko ; Šmuc, Tomislav

Izvornik
Science and Technology of Nuclear Installations (1687-6075) 2008 (2008); 695153, 7

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
machine learning ; reactor core ; SVR method ; optimization

Sažetak
The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression(SVR), which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed and accuracy.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
MZOS-098-0982560-2565 - Postupci računalne inteligencije u mjernim sustavima (Marić, Ivan, MZOS ) ( CroRIS)
MZO-ZP-036-0361590-1579 - Gospodarenje gorivom standardnih i naprednih nuklearnih reaktora (Pevec, Dubravko, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Tomislav Šmuc (autor)

Avatar Url Dubravko Pevec (autor)

Avatar Url Krešimir Trontl (autor)

Poveznice na cjeloviti tekst rada:

doi www.hindawi.com fulir.irb.hr

Citiraj ovu publikaciju:

Trontl, Krešimir; Pevec, Dubravko; Šmuc, Tomislav
Machine learning of the reactor core loading pattern critical parameters // Science and Technology of Nuclear Installations, 2008 (2008), 695153, 7 doi:10.1155/2008/695153 (međunarodna recenzija, članak, znanstveni)
Trontl, K., Pevec, D. & Šmuc, T. (2008) Machine learning of the reactor core loading pattern critical parameters. Science and Technology of Nuclear Installations, 2008, 695153, 7 doi:10.1155/2008/695153.
@article{article, author = {Trontl, Kre\v{s}imir and Pevec, Dubravko and \v{S}muc, Tomislav}, year = {2008}, pages = {7}, DOI = {10.1155/2008/695153}, chapter = {695153}, keywords = {machine learning, reactor core, SVR method, optimization}, journal = {Science and Technology of Nuclear Installations}, doi = {10.1155/2008/695153}, volume = {2008}, issn = {1687-6075}, title = {Machine learning of the reactor core loading pattern critical parameters}, keyword = {machine learning, reactor core, SVR method, optimization}, chapternumber = {695153} }
@article{article, author = {Trontl, Kre\v{s}imir and Pevec, Dubravko and \v{S}muc, Tomislav}, year = {2008}, pages = {7}, DOI = {10.1155/2008/695153}, chapter = {695153}, keywords = {machine learning, reactor core, SVR method, optimization}, journal = {Science and Technology of Nuclear Installations}, doi = {10.1155/2008/695153}, volume = {2008}, issn = {1687-6075}, title = {Machine learning of the reactor core loading pattern critical parameters}, keyword = {machine learning, reactor core, SVR method, optimization}, chapternumber = {695153} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • INSPEC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font