Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 401287

Euclidean and Hyperbolic Geometry of Point Particles:A Progress on the Tantalizing Atiyah-Sutcliffe Conjectures


Svrtan, Dragutin
Euclidean and Hyperbolic Geometry of Point Particles:A Progress on the Tantalizing Atiyah-Sutcliffe Conjectures // 4th Croatian Mathematical Congres CroMC2008 Abstracts / Scitovski Rudolf (ur.).
Osijek: Odjel za Matematiku, Osijek, 2008. str. 55-55 (predavanje, nije recenziran, sažetak, znanstveni)


CROSBI ID: 401287 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Euclidean and Hyperbolic Geometry of Point Particles:A Progress on the Tantalizing Atiyah-Sutcliffe Conjectures

Autori
Svrtan, Dragutin

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
4th Croatian Mathematical Congres CroMC2008 Abstracts / Scitovski Rudolf - Osijek : Odjel za Matematiku, Osijek, 2008, 55-55

Skup
4th Croatian Mathematical Congres CroMC2008

Mjesto i datum
Osijek, Hrvatska, 17.06.2008. - 20.06.2008

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
HYPERBOLIC GEOMETRY OF POINT PARTICLES

Sažetak
In 2001 Sir M. F. Atiyah formulated a conjecture C1 and later with P. Sutcliffe two stronger conjectures C2 and C3. These conjectures, inspired by physics (spin-statistics theorem of quantum mechanics), are geometrically defined for any configuration of points in the Euclidean three space. The conjecture C1 is proved for n = 3, 4 and for general n only for some special configurations (M. F. Atiyah, M. Eastwood and P. Norbury, D.Đoković). Interestingly the conjecture C2 (and also stronger C3) is not yet proven even for arbitrary four points in a plane. So far we have verified the conjectures C2 and C3 for parallelograms, cyclic quadrilaterals and some infinite families of tetrahedra. We have also proposed a strengthening of the conjecture C3 for configurations of four points (Four Points Conjectures). For almost collinear configurations (with all but one point on a line) we propose several new conjectures (some for symmetric functions) which imply C2 and C3. By using computations with multi-Schur functions we can do verifications up to n=9 of our conjectures. We can also verify stronger conjecture of Đoković which imply C2 for his nonplanar configurations with dihedral symmetry. This was done jointly with I.Urbiha. Finally we mention that by minimizing a geometrically defined energy, figuring in these conjectures, one gets a connection to some complicated physical theories, such as Skyrmions and Fullerenes. The speaker found recently two different methods, by which a general case of the Four Points Conjectures in (euclidean) three space and a planar hyperbolic version (of C2) for five points in convex position is verified. References: 1. M.Atiyah, P.Sutcliffe: The Geometry of Point Particles. arXiv: hep-th/0105179. (32 pages) 2. M.Atiyah, P.Sutcliffe: Polyhedra in physics, chemistry and geometry., arXiv: math- ph/03030701 (22 pages). 3. D.Svrtan, I.Urbiha: Atiyah-Sutcliffe Conjectures for almost Collinear Configurations and Some new Conjectures for Symmetric Functions, arXiv: math/0406386 (23 pages). 4. D.Svrtan, I.Urbiha: Verification and Strengthening of the Atiyah-Sutcliffe Conjectures for several types of Configurations, arXiv: math/0609174 (49 pages).

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037-0000000-2779 - Diskretna matematika i primjene (Svrtan, Dragutin, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Dragutin Svrtan (autor)


Citiraj ovu publikaciju:

Svrtan, Dragutin
Euclidean and Hyperbolic Geometry of Point Particles:A Progress on the Tantalizing Atiyah-Sutcliffe Conjectures // 4th Croatian Mathematical Congres CroMC2008 Abstracts / Scitovski Rudolf (ur.).
Osijek: Odjel za Matematiku, Osijek, 2008. str. 55-55 (predavanje, nije recenziran, sažetak, znanstveni)
Svrtan, D. (2008) Euclidean and Hyperbolic Geometry of Point Particles:A Progress on the Tantalizing Atiyah-Sutcliffe Conjectures. U: Scitovski Rudolf (ur.)4th Croatian Mathematical Congres CroMC2008 Abstracts.
@article{article, author = {Svrtan, Dragutin}, year = {2008}, pages = {55-55}, keywords = {HYPERBOLIC GEOMETRY OF POINT PARTICLES}, title = {Euclidean and Hyperbolic Geometry of Point Particles:A Progress on the Tantalizing Atiyah-Sutcliffe Conjectures}, keyword = {HYPERBOLIC GEOMETRY OF POINT PARTICLES}, publisher = {Odjel za Matematiku, Osijek}, publisherplace = {Osijek, Hrvatska} }
@article{article, author = {Svrtan, Dragutin}, year = {2008}, pages = {55-55}, keywords = {HYPERBOLIC GEOMETRY OF POINT PARTICLES}, title = {Euclidean and Hyperbolic Geometry of Point Particles:A Progress on the Tantalizing Atiyah-Sutcliffe Conjectures}, keyword = {HYPERBOLIC GEOMETRY OF POINT PARTICLES}, publisher = {Odjel za Matematiku, Osijek}, publisherplace = {Osijek, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font