Pregled bibliografske jedinice broj: 393665
On bifurcations from normal solutions for superconducting states
On bifurcations from normal solutions for superconducting states // Rendiconti del seminario matematico, 58 (2000), 259-279 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 393665 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On bifurcations from normal solutions for superconducting states
Autori
Dutour, Mathieu ; Helffer, Bernard
Izvornik
Rendiconti del seminario matematico (0373-1243) 58
(2000);
259-279
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
superconductivity ; Ginzburg Landau model ; bifurcation
Sažetak
Motivated by the paper by J. Berger and K. Rubinstein and other recent studies, we analyze the Ginzburg-Landau functional in an open bounded set Omega. We mainly discuss the bifurcation problem whose analysis was initiated by Odeh and show how some of the techniques developed by the first author in the case of Abrikosov's superconductors can be applied in this context. In the case of non simply connected domains, we use previous methodologies for giving the analysis of the structure of the nodal sets for the bifurcating solutions.
Izvorni jezik
Engleski
Znanstvena područja
Fizika
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Zentrallblatt für Mathematik/Mathematical Abstracts