Pregled bibliografske jedinice broj: 393296
Goldberg-Coxeter construction for 3- or 4-valent plane graphs
Goldberg-Coxeter construction for 3- or 4-valent plane graphs // Electronic Journal of Combinatorics, 11 (2004), R20-1 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 393296 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Goldberg-Coxeter construction for 3- or 4-valent plane graphs
Autori
Dutour, Mathieu ; Deza, Mathieu
Izvornik
Electronic Journal of Combinatorics (1077-8926) 11
(2004);
R20-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
plane transformation; graphs; groups
Sažetak
We consider the Goldberg-Coxeter construction GC_{; ; k, l}; ; (G0) (a generalization of a simplicial subdivision of Dodecahedron considered), which produces a plane graph from any 3- or 4-valent plane graph for integer parameters k, l. A zigzag in a plane graph is a circuit of edges, such that any two, but no three, consecutive edges belong to the same face ; a central circuit in a 4-valent plane graph G is a circuit of edges, such that no two consecutive edges belong to the same face. We study the zigzag (or central circuit) structure of the resulting graph using the algebraic formalism of the moving group, the (k, l)-product and a finite index subgroup of SL2(Z), whose elements preserve the above structure. We also study the intersection pattern of zigzags (or central circuits) of GC_{; ; k, l}; ; (G0) and consider its projections, obtained by removing all but one zigzags (or central circuits).
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Zentrallblatt für Mathematik/Mathematical Abstracts