Pregled bibliografske jedinice broj: 393202
Perfect Delaunay Polytopes in Low Dimensions
Perfect Delaunay Polytopes in Low Dimensions // Integers, 7 (2007), A39-A39-49 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 393202 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Perfect Delaunay Polytopes in Low Dimensions
Autori
Dutour, Mathieu
Izvornik
Integers (1553-1732) 7
(2007);
A39-A39-49
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
perfect form ; Delaunay polytopes ; lattice
Sažetak
A lattice Delaunay polytope is perfect if its Delaunay sphere is its only circumscribed ellipsoid. A perfect Delaunay polytope naturally corresponds to a positive quadratic function on Z^n that can be recovered uniquely from the data consisting of its minimum and all points of Z^n where the minimum is achieve - a quadratic function with this uniqueness property is also called perfect. We develop a structural theory of perfect Delaunay polytopes and quadratic functions. We also describe all known perfect Delaunay polytopes in dimensions one through eight: our conjecture is that this list is complete.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Uključenost u ostale bibliografske baze podataka::
- Zentrallblatt für Mathematik/Mathematical Abstracts