Pregled bibliografske jedinice broj: 393165
How to compute the rank of a Delaunay polytope
How to compute the rank of a Delaunay polytope // European journal of combinatorics, 28 (2007), 762-773 doi:10.1016/j.ejc.2005.12.007 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 393165 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
How to compute the rank of a Delaunay polytope
Autori
Dutour Sikirić, Mathieu ; Grishukhin, Viatcheslav
Izvornik
European journal of combinatorics (0195-6698) 28
(2007);
762-773
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Delaunay polytope ; counter-example ; rank ; lattice
Sažetak
Roughly speaking, the rank of a Delaunay polytope (first introduced in DGL92) is its number of degrees of freedom. In DL, a method for computing the rank of a Delaunay polytope P, using the hypermetrics related to $P$, is given. Here a simpler more efficient method, which uses affine dependencies instead of hypermetrics, is given. This method is applied to the classical Delaunay polytopes: cross-polytopes and half-cubes. Then, we give an example of a Delaunay polytope, which does not have any affine basis.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Zentrallblatt für Mathematik/Mathematical Abstracts