Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 393016

The N = 1 Triplet Vertex Operator Superalgebras


Adamović, Dražen; Milas, Antun
The N = 1 Triplet Vertex Operator Superalgebras // Communications in mathematical physics, 288 (2009), 1; 225-270 doi:10.1007/s00220-009-0735-2 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 393016 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The N = 1 Triplet Vertex Operator Superalgebras

Autori
Adamović, Dražen ; Milas, Antun

Izvornik
Communications in mathematical physics (0010-3616) 288 (2009), 1; 225-270

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
logarithmic conformal field theory; vertex operator superalgebras; W-algebras; N=1 Neveu-Schwarz Lie superalgebra; C_2 cofiniteness; quantum groups

Sažetak
We introduce a new family of C_2-cofinite N=1 vertex operator superalgebras SW(m), $m \geq 1$, which are natural super analogs of the triplet vertex algebra family W(p), $p \geq 2$, important in logarithmic conformal field theory. We classify irreducible SW(m)-modules and discuss logarithmic modules. We also compute bosonic and fermionic formulas of irreducible SW(m) characters. Finally, we contemplate possible connections between the category of SW(m)-modules and the category of modules for the quantum group U^{; ; small}; ; _q(sl_2), q=e^{; ; \frac{; ; 2 \pi i}; ; {; ; 2m+1}; ; }; ; , by focusing primarily on properties of characters and the Zhu's algebra A(SW(m)). This paper is a continuation of our paper [Adamovic D., Milas A., Adv. Math. 217 (2008), 2664-2699].

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Fizika



POVEZANOST RADA


Projekti:
037-0372794-2806 - Algebre verteks-operatora i beskonačno dimenzionalne Liejeve algebre (Primc, Mirko, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb

Profili:

Avatar Url Antun Milas (autor)

Avatar Url Dražen Adamović (autor)

Poveznice na cjeloviti tekst rada:

doi www.springerlink.com

Citiraj ovu publikaciju:

Adamović, Dražen; Milas, Antun
The N = 1 Triplet Vertex Operator Superalgebras // Communications in mathematical physics, 288 (2009), 1; 225-270 doi:10.1007/s00220-009-0735-2 (međunarodna recenzija, članak, znanstveni)
Adamović, D. & Milas, A. (2009) The N = 1 Triplet Vertex Operator Superalgebras. Communications in mathematical physics, 288 (1), 225-270 doi:10.1007/s00220-009-0735-2.
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and Milas, Antun}, year = {2009}, pages = {225-270}, DOI = {10.1007/s00220-009-0735-2}, keywords = {logarithmic conformal field theory, vertex operator superalgebras, W-algebras, N=1 Neveu-Schwarz Lie superalgebra, C\_2 cofiniteness, quantum groups}, journal = {Communications in mathematical physics}, doi = {10.1007/s00220-009-0735-2}, volume = {288}, number = {1}, issn = {0010-3616}, title = {The N = 1 Triplet Vertex Operator Superalgebras}, keyword = {logarithmic conformal field theory, vertex operator superalgebras, W-algebras, N=1 Neveu-Schwarz Lie superalgebra, C\_2 cofiniteness, quantum groups} }
@article{article, author = {Adamovi\'{c}, Dra\v{z}en and Milas, Antun}, year = {2009}, pages = {225-270}, DOI = {10.1007/s00220-009-0735-2}, keywords = {logarithmic conformal field theory, vertex operator superalgebras, W-algebras, N=1 Neveu-Schwarz Lie superalgebra, C\_2 cofiniteness, quantum groups}, journal = {Communications in mathematical physics}, doi = {10.1007/s00220-009-0735-2}, volume = {288}, number = {1}, issn = {0010-3616}, title = {The N = 1 Triplet Vertex Operator Superalgebras}, keyword = {logarithmic conformal field theory, vertex operator superalgebras, W-algebras, N=1 Neveu-Schwarz Lie superalgebra, C\_2 cofiniteness, quantum groups} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font