Pregled bibliografske jedinice broj: 393016
The N = 1 Triplet Vertex Operator Superalgebras
The N = 1 Triplet Vertex Operator Superalgebras // Communications in mathematical physics, 288 (2009), 1; 225-270 doi:10.1007/s00220-009-0735-2 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 393016 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The N = 1 Triplet Vertex Operator Superalgebras
Autori
Adamović, Dražen ; Milas, Antun
Izvornik
Communications in mathematical physics (0010-3616) 288
(2009), 1;
225-270
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
logarithmic conformal field theory; vertex operator superalgebras; W-algebras; N=1 Neveu-Schwarz Lie superalgebra; C_2 cofiniteness; quantum groups
Sažetak
We introduce a new family of C_2-cofinite N=1 vertex operator superalgebras SW(m), $m \geq 1$, which are natural super analogs of the triplet vertex algebra family W(p), $p \geq 2$, important in logarithmic conformal field theory. We classify irreducible SW(m)-modules and discuss logarithmic modules. We also compute bosonic and fermionic formulas of irreducible SW(m) characters. Finally, we contemplate possible connections between the category of SW(m)-modules and the category of modules for the quantum group U^{; ; small}; ; _q(sl_2), q=e^{; ; \frac{; ; 2 \pi i}; ; {; ; 2m+1}; ; }; ; , by focusing primarily on properties of characters and the Zhu's algebra A(SW(m)). This paper is a continuation of our paper [Adamovic D., Milas A., Adv. Math. 217 (2008), 2664-2699].
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Fizika
POVEZANOST RADA
Projekti:
037-0372794-2806 - Algebre verteks-operatora i beskonačno dimenzionalne Liejeve algebre (Primc, Mirko, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts
- Scopus