Pregled bibliografske jedinice broj: 392907
Elementary Elliptic (R, q)-polycycles
Elementary Elliptic (R, q)-polycycles // Analysis of Complex Networks, From Biology to Linguistics / Dehmer, Matthias ; Emmert-Streib, Frank (ur.).
Weinheim: Wiley-Blackwell, 2009. str. 351-376 doi:10.1002/9783527627981.ch14
CROSBI ID: 392907 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Elementary Elliptic (R, q)-polycycles
Autori
Deza, Michel ; Dutour Sikirić, Mathieu ; Shtogrin, Mikhail
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Analysis of Complex Networks, From Biology to Linguistics
Urednik/ci
Dehmer, Matthias ; Emmert-Streib, Frank
Izdavač
Wiley-Blackwell
Grad
Weinheim
Godina
2009
Raspon stranica
351-376
ISBN
978-3-527-32345-6
Ključne riječi
plane graphs ; enumeration
Sažetak
A (R, q)-polycycle is, roughly, a map, whose faces, besides some disjoint holes, are i-gons with i in R, and whose vertices, outside of holes, are q-valent. Such polycycle is called elliptic, parabolic or hyperbolic if 1/q+1/r-1/2 (where r=max R) is positive, zero or negative, respectively. In elliptic case, we list all elementary (R, q)-polycycles, i.e. such that any (R, q)-polycycle is uniquely decomposed into agglomeration of elementary (R, q)-polycycles.
Izvorni jezik
Engleski
Znanstvena područja
Matematika