Pregled bibliografske jedinice broj: 392803
Data Preprocessing in Data Based Process Modeling
Data Preprocessing in Data Based Process Modeling // Proceedings of the 2nd IFAC International Conference on Intelligent Control Systems and Signal Processing / Kayakan, Erdal (ur.).
Istanbul, Turska: IFAC, International Federation for Automatic Control, 2009. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 392803 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Data Preprocessing in Data Based Process Modeling
Autori
Slišković, Dražen ; Grbić, Ratko ; Nyarko, Emmanuel Karlo
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2nd IFAC International Conference on Intelligent Control Systems and Signal Processing
/ Kayakan, Erdal - : IFAC, International Federation for Automatic Control, 2009
ISBN
978-3-902661-66-1
Skup
The 2nd IFAC International Conference on Intelligent Control Systems and Signal Processing
Mjesto i datum
Istanbul, Turska, 21.09.2009. - 23.09.2009
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
plant data preprocessing; wavelet analysis; process modeling; projection into a latent space; difficult-to-measure process variable estimation; distillation column
Sažetak
Important process variables which give information about the final product quality cannot often be measured by a sensor. The alternative procedure is estimation of these difficult-to-measure process variables for which it is necessary to have an appropriate process model. Process model building is based on plant data, taken from the process database. Since the quality of the built model depends heavily on the modeling data informativity, a preparatory part of modeling, in which analysis and preprocessing of available measured data are performed, is a very important step in such process modeling. The analysis and preprocessing of real data obtained from an oil distillation process are showed in the paper. The results show that, apart from the regression method applied, selection of easy-to-measure variables which will be used in the model building and filtering of easy-to-measure variables significantly affects process model prediction capabilities.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
165-0361621-2000 - Distribuirano računalno upravljanje u transportu i industrijskim pogonima (Hocenski, Željko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek